
Language support for the construction
of high performance code generators

Georg Ofenbeck† Tiark Rompf ∗‡ Alen Stojanov† Martin Odersky∗ Markus Püschel†
†Dept. of Computer Science, ETH Zurich: {ofgeorg, astojanov, pueschel}@inf.ethz.ch
‡Oracle Labs: {first.last}@oracle.com ∗EPFL: {first.last}@epfl.ch

1. Introduction
The development of highest performance code on modern
processors is extremely difficult due to deep memory hierar-
chies, vector instructions, multiple cores, and inherent limi-
tations of compilers. The problem is particularly noticeable
for library functions of mathematical nature (e.g., BLAS,
FFT, filters, Viterbi decoders) that are performance-critical
in areas such as multimedia processing, computer vision,
graphics, machine learning, or scientific computing. Experi-
ence shows that a straightforward implementation often un-
derperforms by one or two orders of magnitude compared to
highly tuned code. The latter is often highly specialized to a
platform which makes porting very costly. One appealing so-
lution to the problem of optimizing and porting libraries are
program generators that automatically produce highest per-
formance libraries for a given platform from a high level de-
scription. Building such a generator is difficult, which is the
reason that only very few exist to date. The difficulty comes
from both the problem of designing an extensible approach
to perform all the optimizations the compiler is unable to do
and the actual implementation of the generator.

To tackle the latter problem we asked the question: Which
programming languages features support the development of
generators for performance libraries? We investigated that
question through a case study [2], in which we implemented
a subset of the Spiral program generator [3] in the host
language Scala. This paper summarizes the key novelties we
explored throughout the referenced paper.

2. Language support in Scala with LMS
Throughout the case study we map a list of requirements
extracted from several well established program generators
and map them to language constructs in our chosen target
environment: Scala with Lightweight Modular Staging [4].
The list of requirements consists of:

• Describe problem and algorithmic knowledge through
one or multiple levels of DSLs. Program generators need
to model problems and algorithms at a high level of
abstraction and may need to optimize code at multiple
intermediate abstraction levels.

• Specify certain optimizations and algorithmic choices
as rewrite rules on DSL programs. DSLs can be used
for high-level optimization through rewriting (e.g., par-

allelization in Spiral) but rewrite rules can also be used
to express algorithmic choices. Doing so facilitates em-
pirical search ("autotuning”), which in many cases is re-
quired to achieve optimal performance.

• Design high-level data structures that can be parametrized
to generate multiple low-level representations. Often
generated libraries need to support multiple input/output
data formats. A common example is interleaved or split
or C99 format for complex vectors, meaning there will
be one library function per format. A generator should be
able to abstract over this choice of low-level data formats
to ensure maximal compatibility [1].

• Rely on common infrastructure for recurring low-level
transformations. There are certain transformations com-
mon in high performance code that are necessary but par-
ticularly unpleasant to implement and maintain manu-
ally. Examples include a) unrolling with scalar replace-
ment, b) selective precomputation during code produc-
tion or initialization, and c) specialization (e.g., to a par-
tially known input). Since these transformations are so
common, they should be implemented in a portable way
using suitable language features.

2.1 Algorithmic Knowledge as Multiple Levels of DSLs

We implement DSLs using the infrastructure provided by
LMS, described in detail in [5]. To produce a regular pro-
gram from our metaprogram, we would translate a DSL by
emitting a function for each node in the form:
def f(in: T): T

The resulting functions we would chain during translation to
yield our final program by calling the topmost element of the
chain. To facilitate multiple levels of DSLs we extend the
common use case of staged DSLs, by changing the output
of our meta program to be a meta program by itself. To
implement this we simply add staging annotation to the
emitted functions in the form of
def f(in: Rep[T]): Rep[T]

where Rep[T] is the common staging annotation used in
LMS. Note that Rep[_] is a higher order type.

2.2 Optimization through DSL Rewriting

The implementation of DSL rewrites benefits heavily from
the build-in patter matching support of Scala. Arithmetic
simplification e.g. can be expressed with the following code



def transformStm(stm: Stm):Exp[Any]=
stm.rhs match {
case NumericTimes(a, b) => (this(a), this(b)) match {
case (_, Const(0)) | (Const(0), _) => Const(0)

}
case _ => super.transformStm(stm) }

2.3 Abstracting Over Data Representations and Code
Style

Staging annotations in LMS are done via types, which in
turn enables us to use the type system in surprising ways.
Rep[_] is a higher order type, which once parametrized with
a concrete type T becomes the concrete type Rep[T]. There-
fore we can translate a DSL into a function graph, consisting
of elements which are parametrized in type T as follows:
def f[T](in: T): T

With this construct, the function graph can be called with
a concrete type T or with its staged alternative Rep[T]. This
allows us to effectively turn staging on or off.

2.3.1 Selective Precomputation

To activate precomputation selectively we utilize the mech-
anism described above as sketched in the snippet below:
val input: Rep[Double]
val index: Int
val result1 = input * f(index: Int) //Precompute
val result2 = input * f(index: Rep[Int]) //stage

Note that the only difference between the two result variants
is the type of the input. The implementation of the selectively
precomputed function can be done completely abstract and
only a single code implementation is required for it.

2.3.2 Abstraction over Code Style

Putting staging expression on different positions in the meta
program yields fundamentally different code in the staged
program. Putting the staging annotation around only primitiv
types yields code that is scalarized and unrolled due to the
fact that every array access and the loop evaluation are done
at staging time and will not appear in the staged program.
def f(in: Array[Rep[Double]]): Array[Rep[Double]] =

for (i <- (0 until n):Range) ...

Putting the staging annotation around the array will also
yield unrolled code, but every array access and store is now
part of the staged program.
def f(in: Rep[Array[Double]]): Rep[Array[Double]]

for (i <- (0 until n):Range) ...

Finally, putting the annotation also at the loop construct will
lift the loop itself into the staged program, yielding looped
code that works on arrays.
def f(in: Rep[Array[Double]]): Rep[Array[Double]]

for (i <- (0 until n):Rep[Range]) ...

Combining these observations with the selective staging uti-
lized for precomputation we can now write functions of the
form:

def f[A[_],L[_],T](in: A[Array[T]]): A[Array[T]] =
for (i <- (0 until n):L[Range]) ...

This construct allows us to abstract all the codestyles men-
tioned and choose the code style by type parametrization of
the function. For example:
val x = f[Rep,Rep,Double](y)

will yield the looped code working on arrays and
type NoRep[T] = T
val x = f[NoRep,NoRep,Rep[Double]](y)

will yield the unrolled, scalarized code. Note that functions
which are ill-parametrized will yield a type error at compile
time. We consider this a major benefit compared to other
metaprogramming approaches such as e.g. using C++ tem-
plates to achieve the same goal. In such an approach errors
would by default only manifest once the concrete implemen-
tation is generated.

2.3.3 Abstraction over Data Representations

Finally we combine all of the above with standard object
oriented programming to abstract over different data layouts.
We define a base type Vector
abstract class Vector[A[_], L[_], T] {
def apply(i: A[Int]): T
def update(i: A[Int], y: T)

}

which we then extend with subtypes that implement concrete
implementation e.g.
class Staged_Unrolled_List
extends class Vector[Rep[_], NoRep[_], T] {
def apply(i: Rep[Int]): T
//call to staged list apply
def update(i: Rep[Int], y: T) }
//call to staged list update

This object model allows us to pass only the super type
through the generated call graph and therefore construct a
solution that is abstract in the data layout. The concrete
instantiation can be selected again by passing the according
type into the top of the generated callgraph. In the full paper
we show a more involved implementation which enables us
to abstract over all different types of complex data (C99,
Interleaved Complex etc.) which is build around the same
principle.

3. Conclusions
Ever since the term multi-stage-programming was coined by
by Taha and Sheard [6] it was related to program genera-
tion. In our case study we demonstrated that multi-stage-
programming, which is done trough types, enables us to
couple it with modern program language constructs such
as generics. Through this combination we are able to build
powerful techniques for program generations such as ab-
stract over precompuation, abstraction over the code style
of the resulting program and finally the data layout of the
target program.



References
[1] B. Aktemur, Y. Kameyama, O. Kiselyov, and C.-c. Shan.

Shonan challenge for generative programming: short position
paper. In Proc. Partial evaluation and program manipulation
(PEPM), pages 147–154, 2013.

[2] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and
M. Püschel. Spiral in scala: Towards the systematic construc-
tion of generators for performance libraries. In International
Conference on Generative Programming: Concepts & Experi-
ences (GPCE), 2013.

[3] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code gener-
ation for DSP transforms. Proceedings of the IEEE, special is-
sue on "Program Generation, Optimization, and Adaptation”,
93(2):232– 275, 2005.

[4] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled
dsls. Commun. ACM, 55(6):121–130, 2012.

[5] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi,
M. Odersky, and K. Olukotun. Building-blocks for perfor-
mance oriented dsls. ., (arXiv:1109.0778), Sep 2011. Com-
ments: In Proceedings DSL 2011, arXiv:1109.0323.

[6] W. Taha and T. Sheard. Metaml and multi-stage programming
with explicit annotations. Theor. Comput. Sci., 248(1-2):211–
242, 2000.


	Introduction
	Language support in Scala with LMS
	Algorithmic Knowledge as Multiple Levels of DSLs
	Optimization through DSL Rewriting
	Abstracting Over Data Representations and Code Style
	Selective Precomputation
	Abstraction over Code Style
	Abstraction over Data Representations


	Conclusions

