SIMD Intrinsics on Managed Language Runtimes

Alen Stojanov
Department of Computer Science
ETH Zurich
Switzerland
astojanov@inf.ethz.ch

Tiark Rompf
Department of Computer Science
Purdue University
USA
tiark@purdue.edu

Abstract

Managed language runtimes such as the Java Virtual Ma-
chine (JVM) provide adequate performance for a wide range
of applications, but at the same time, they lack much of the
low-level control that performance-minded programmers
appreciate in languages like C/C++. One important example
is the intrinsics interface that exposes instructions of SIMD
(Single Instruction Multiple Data) vector ISAs (Instruction
Set Architectures). In this paper we present an automatic
approach for including native intrinsics in the runtime of
a managed language. Our implementation consists of two
parts. First, for each vector ISA, we automatically generate
the intrinsics API from the vendor-provided XML specifi-
cation. Second, we employ a metaprogramming approach
that enables programmers to generate and load native code
at runtime. In this setting, programmers can use the entire
high-level language as a kind of macro system to define new
high-level vector APIs with zero overhead. As an example
use case we show a variable precision API. We provide an
end-to-end implementation of our approach in the HotSpot
VM that supports all 5912 Intel SIMD intrinsics from MMX to
AVX-512. Our benchmarks demonstrate that this combina-
tion of SIMD and metaprogramming enables developers to
write high-performance, vectorized code on an unmodified
JVM that outperforms the auto-vectorizing HotSpot just-in-
time (JIT) compiler and provides tight integration between
vectorized native code and the managed JVM ecosystem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CGO’18, February 24-28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5617-6/18/02...$15.00
https://doi.org/10.1145/3168810

Ivaylo Toskov
Department of Computer Science
ETH Zurich
Switzerland
itoskov@student.ethz.ch

Markus Piischel
Department of Computer Science
ETH Zurich
Switzerland
pueschel@inf.ethz.ch

CCS Concepts + Computer systems organization —
Single instruction, multiple data; « Software and its
engineering — Virtual machines; Translator writing
systems and compiler generators; Source code genera-
tion; Runtime environments;

Keywords SIMD instruction set, Managed Languages, JVM,
Scala, Staging, Metaprogramming

ACM Reference Format:

Alen Stojanov, Ivaylo Toskov, Tiark Rompf, and Markus Piischel.
2018. SIMD Intrinsics on Managed Language Runtimes. In Proceed-
ings of 2018 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO’18). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3168810

1 Introduction

Managed high-level languages are designed to be portable
and to support a broad range of applications. For the pro-
grammer, the price is reduced access to detailed and low-
level performance optimizations. In particular, SIMD vector
instructions on modern architectures offer significant par-
allelism, and thus potential speedup, but neither languages
like Java, JavaScript, Python, or Ruby, nor their managed run-
times provide direct access to SIMD facilities. This means that
SIMD optimizations, if available at all, are left to the virtual
machine (VM) and the built-in just-in-time (JIT) compiler
to carry out automatically, which often leads to suboptimal
code. As a result, developers may be pushed to use low-level
languages such as C/C++ to gain access to the intrinsics APL
But leaving the high-level ecosystem of Java or other lan-
guages also means to abandon many high-level abstractions
that are key for the productive and efficient development
of large-scale applications, including access to a large set of
libraries.

To reap the benefits of both high-level and low-level lan-
guages, developers using managed languages may write low-
level native C/C++ functions, that are invoked by the man-
aged runtime. In the case of Java, developers could use the
Java Native Interface (JNI) to invoke C functions with spe-
cific naming conventions. However, this process of dividing

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3168810
https://doi.org/10.1145/3168810

CGO’18, February 24-28, 2018, Vienna, Austria

the application logic between two languages creates a sig-
nificant gap in the abstractions of the program, limits code
reuse, and impedes clear separation of concerns. Further, the
native code must be cross-compiled ahead of time, which is
an error-prone process that requires complicated pipelines
to support different operating systems and architectures, and
thus directly affects code maintenance and refactoring.

To address these problems, we propose a systematic and
automated approach that gives developers access to SIMD
instructions in the managed runtime, eliminating the need
to write low-level C/C++ code. Our methodology supports
the entire set of SIMD instructions in the form of embedded
domain-specific languages (eDSLs) and consists of two parts.
First, for each architecture, we automatically generate ISA-
specific eDSLs from the vendor’s XML specification of the
SIMD intrinsics. Second, we provide the developer with the
means to use the SIMD eDSL to develop application logic,
which automatically generates native code inside the run-
time. Instead of executing each SIMD intrinsic immediately
when invoked by the program, the eDSLs provide a staged or
deferred API, which accumulates intrinsic invocations along
with auxiliary scalar operations and control flow, batches
them together in a computation graph, and generates a na-
tive kernel that executes them all at once, when requested
by the program. This makes it possible to interleave SIMD
intrinsics with the generic language constructs of the host
language without switching back and forth between native
and managed execution, enabling programmers to build both
high-level and low-level abstractions, while running SIMD
kernels at full speed.

This paper makes the following contributions:

1. We present the first systematic and automated ap-
proach that supports the entire set of SIMD instruc-
tions, automatically generated from the vendor spec-
ification, in a managed high-level language. The ap-
proach is applicable to other low-level instructions,
provided support for native code binding in the man-
aged high-level language.

2. In doing so, we show how to use metaprogramming
techniques and runtime code generation to give back
low-level control to developers in an environment that
typically hides architecture-specific details.

3. We provide an end-to-end implementation of our ap-
proach within the HotSpot JVM, which provides access
to all Intel SIMD intrinsics from MMX to AVX-512.

4. We show how to use the SIMD eDSLs to build new
abstractions using host language constructs. Program-
mers can use the entire managed language as a form
of macro system to define new vectorized APIs with
zero overhead. As an example, we present a “virtual
ISA” for variable precision arithmetic.

Alen Stojanov, lvaylo Toskov, Tiark Rompf, and Markus Piischel

5. We provide benchmarks that demonstrate significant
performance gains of explicit SIMD code versus code
auto-vectorized by the HotSpot JIT compiler.

Our work focuses on the JVM and Intel SIMD intrinsics
functions, but would equally apply to other platforms. For
the implementation of computation graphs and runtime code
generation, we use the LMS (Lightweight Modular Staging)
compiler framework [20].

2 Background

We provide background on intrinsics functions, JVMs, and
the LMS metaprogramming framework that we use.

2.1 Intrinsics

Intrinsics are compiler-built-in functions that usually map
into a single or a small number of assembly instructions. Dur-
ing compilation, they are inlined to remove calling overhead.
This way they provide the programmer with assembly-like
functionality, without having to worry about register alloca-
tion and instruction scheduling. SIMD intrinsics give access
to data parallel instructions in vector ISAs, such as NEON
on ARM processors, or the SSE and AVX families on Intel.

We focus on the x86 architecture and the associated SIMD
intrinsics that are available in modern C/C++ compilers, such
as GCC, Clang/LLVM, and Intel ICC. Specifically, these include
the following ISAs:

e MMX - operating on 64-bit wide registers; provides inte-
ger operations only.

e SSE/SSE2/ SSE3/ SSSE3 / SSE4.1/ SSE4.2 - operat-
ing on 128-bit wide registers; provides integer, 32-bit,
and 64-bit floating point operations, string operations
and cache and memory management operations.

e AVX / AVX2 - ISAs that expand the SSE operations to
256-bit wide registers and provide extra operations for
manipulating non-contiguous memory locations.

e FMA - an extension to SSE and AVX ISAs to provide
fused multiply add operations.

e AVX-512 - extends AVX to operate on 512-bit registers
and consists of multiple parts called F /BW/ CD / DQ /
ER / IFMA52 / PF / VBMI / VL.

o KNC - the first production version of Intel’s Many In-
tegrated Core (MIC) architecture that provides opera-
tions on 512-bit registers.

Additionally, we also include:

e SVML - an intrinsics short vector math library, built on
top of the ISAs mentioned above.

e Sets of smaller ISA extensions: ADX / AES / BMI1 /
BMI2 / CLFLUSHOPT / CLWB /FP16C / FSGSBASE / FXSR/
INVPCID/LZCNT /MONITOR/MPX/PCLMULQDQ/POPCNT
/ PREFETCHWT1 / RDPID / RDRAND / RDSEED / RDTSCP /
RTM / SHA / TSC / XSAVE / XSAVEC / XSAVEOPT / XSS

SIMD Intrinsics on Managed Language Runtimes

CGO’18, February 24-28, 2018, Vienna, Austria

Table 1. Simplified classification of intrinsics (a) and instruction count (b) of the x86 SIMD Intrinsics set.

Arithmetics Shuffles Statistics Loads ISA Count
_mm256_add_pd _mm256_permutevar_pd _mm_avg_epu8 _mm_i32gather_epi32 MMX 124
_mm256_hadd_ps _mm256_shufflehi_epil6 _mm256_cdfnorm_pd _mm256_broadcast_ps SSE 154
SSE2 236

. . SSE3 11

Compare String Logical Stores SSSE3 39
_mm_cmp_epil6_mask _mm_cmpestrm _mm256_or_pd _mm512_storenrngo_pd SSE41 61
_mm_cmpeq_epi8 _mm_cmpistrz _mm256_andnot_pd _mm_store_pd1 SSE42 19
AVX 188

. . AVX2 191

Random Bitwise Crypto Conversion AVX-512 3857
_rdrand16_step _mm256_bslli_epil128 _mm_aesdec_si128 _mm256_castps_pd FMA 32
_rdseed64_step _mm512_rol_epi32 _mm_shalmsgl_epu32 _mm256_cvtps_epi32 KNC 601
SVML 406

(@

These ISAs yield a large number of associated intrinsics:
arithmetics operations on both floating point and integer
numbers, intrinsics that operate with logical and bitwise
operations, statistical and cryptographic operations, com-
parison, string operations and many more. Table 1a gives a
rough classification of the different classes of intrinsics. To
ease the life of the developers, Intel provides an interactive
tool called Intel Intrinsics Guide [3] where each available
intrinsics is listed, including a detailed description of the
underlying ISA instruction. Table 1b shows the number of
available intrinsics: 5912 in total (of which 338 are shared
between AVX-512 and KNC), classified into 24 groups.

2.2 Java Virtual Machines

There are many active implementations of the JVM includ-
ing the open source IBM V9 [8], Jikes RVM [4], Maxine [29],
JRockit [15], and the proprietary SAP JVM [24], CEE-] [26],
JamaicaVM [25]. HotSpot remains the primary reference
JVM implementation that is used by both Oracle Java and
OpenJDK. Each of the JVM implementations provides sup-
port for Java Standard Edition or Micro Edition, tailored for a
particular need: either a particular target machine or microar-
chitecture, embedded systems, operating system, provides
additional garbage collector, resource control or parallelism
model. However, none of the active JVM implementation
provides any support for explicit vectorization nor intrinsics,
nor permits inlining of assembly code directly in the Java
source due to portability specifications.

The HotSpot JVM, which is the focus of this study, pro-
vides JIT compilation of Java bytecode as a black box. The
developer has no control over, nor receives any feedback
on the compilation phases except through coarse-grained
command-line and debug options [16]. There are two flavors
of the VM: a client mode focused on latency, and a server
mode tuned for throughput. We only focus on the Server
VM, as it is tuned to maximize peak operating speed. The
Server VM offers a tiered compilation of bytecode using the

(b)

C1 and C2 compilers. C1 is a fast, lightly optimizing bytecode
compiler, while C2 performs more aggressive optimizations.
When JVM applications are started, the HotSpot VM starts
interpreting bytecode. It detects computation-intensive hot
spots in the code via profiling, and proceeds to compile the
bytecode of frequently used functions with C1. Once further
thresholds are reached, functions may be compiled using
C2. C2 supports autovectorization, using Superword Level
Parallelism (SLP) [11]. SLP detects groups of isomorphic in-
structions and replaces them with SIMD instructions, which
results in a lightweight vectorization. The SLP approach is
limited and cannot optimize across loop iterations, nor can
it detect idioms such as reductions.

2.3 Lightweight Modular Staging

Lightweight Modular Staging (LMS) [20, 21] is a framework
for runtime code generation and for building compilers for
embedded DSLs in Scala. LMS makes pervasive use of op-
erator overloading to make code generation blend in with
normal programming. The core abstraction is a type con-
structor Rep[T] that marks code expressions. For example,
executing a + b where a and b are two Rep[Int] expressions
will create a program expression that represents the addition
a’ + b’, where a’ and b’ are the program expressions a
and b evaluate to. This form of operator overloading is ex-
tended to if/else expressions and other built-in constructs
[2, 19]. The combined program expression can be unparsed
to source code, in this paper to C or LLVM code, compiled
dynamically, and loaded into the running JVM.

3 Intrinsics in the JVM

In this section, we present our two-tier approach for mak-
ing the Intel SIMD intrinsics available in the JVM. First we
automatically generate SIMD eDSLs, each implemented as a
Scala class that corresponds to one of the 13 vector ISAs in
Figure 1b. Then, we show how to use these eDSLs to generate

CGO’18, February 24-28, 2018, Vienna, Austria

Table 2. Type mappings between JVM and C/C++ types .

JVM Types < C/C++ Types

Float « float Char — int16_t
Double ¢ double Boolean > bool
Byte — int8_t UByte —uint8_t
Short — int16_t UShort — uint16_t
Int — int32_t UInt —uint32_t
Long < int64_t UlLong < uint64_t

high-performance SIMD code with high-level language con-
structs inherited by the host language. We show examples of
end-user code in Scala, but any other JVM language could be
used. Before we start, we have to establish a corresponding
type system between the JVM and the SIMD intrinsics func-
tions to represent the SIMD vector types, that is required for
the generation of the eDSLs and their usage.

3.1 Type System for SIMD Intrinsics in the JVM

The JVM has no notion of SIMD vector types, thus we build
abstract classes to mark the type of DSL expressions that
represent SIMD intrinsics functions in LMS:

Rep[__m64] // MMX integer types

Rep[__m128]1 // SSE 4x32-bit float

Rep[__m128d] // SSE 2x64-bit float

Rep[__m128i] // SSE 2x64/4x32/8x16/16x8-bit integer
Rep[__m256] // AVX 8x32-bit float

Rep[__m256d] // AVX 4x64-bit float

Rep[__m256i] // AVX 4x64/84x32/16x16/32x8-bit integer
Rep[__m512] // AVX512 16x32-bit float

Rep[__m512d] // AVX512 8x64-bit float
Rep[__m512i] // AVX512 8x64/16x32/32x16/64x8-bit integer

SIMD intrinsics functions take primitive arguments that
correspond to low-level C/C++ primitive types. The primitive
types in the JVM exhibit a fixed width, and therefore a direct
mapping can be established with C/C++ primitives. Some
intrinsics however, require the use of unsigned types that
are not supported natively in the JVM:

unsigned int _mm_crc32_ul6 (unsigned int, unsigned short)

To mitigate this problem, we use the Scala Unsigned [14]
package, which implements unsigned types and operations
on top of the signed types available in the JVM. Table 2 shows
the type mapping between the 12 primitives, which in most
cases is straight-forward, except for JVM Char that maps
to int16_t to support UTF-8. Arrays of primitive types in
the JVM and C/C++ code are isomorphic and both represent
continuous memory space of a certain primitive type. There-
fore Array[T] maps to a memory pointer T* in the low-level
SIMD intrinsics.

3.2 Automatic Generation of ISA-specific eDSLs

LMS provides a relatively simple interface to define eDSLs,
but adding more than 5000 functions by hand would be
tedious and error prone. Our approach generates the LMS
eDSLs automatically from the XML specification provided by

Alen Stojanov, lvaylo Toskov, Tiark Rompf, and Markus Piischel

Parse XML intrinsics specification

l

frmmmmeeees Infer intrinsic mutability

|

Generate ISA specific DSL in LMS

l

case class Def[T] n Definition

If mutable, handle LMS effects

[> Def[T] - Exp[T] Q SSA
!
Exp[T] - Def[T] a Mirroring
!

Def[T] - String o Un-parsing

Split each ISA specific DSL into subclasses

Figure 1. Generating SIMD intrinsics eDSLs from vendor
specification.

<intrinsic rettype='__m256d' name='_mm256_add_pd'>
<type>Floating Point</type>
<CPUID>AVX</CPUID>
<category>Arithmetic</category>
<parameter varname='a' type='__m256d"'/>
<parameter varname='b' type='__m256d"'/>
<description>

Add packed double-precision (64-bit)
floating-point elements in "a" and "b",
and store the results in "dst".
</description>
<operation>
FOR j := @ to 3
i := jx64
dst[i+63:i] := al[i+63:1] + b[i+63:i]
ENDFOR
dst[MAX:256] := @
</operation>
<instruction name='vaddpd' form='ymm, ymm, ymm'/>
<header>immintrin.h</header>
</intrinsic>

Figure 2. XML specification of the _mm256_add_pd intrinsic.

the Intel Intrinsics Guide; these are then packed as a jar file
that is later published in the Maven Central Repository [5] for
deployment. At the time of writing, we use the latest version
of the intrinsics specifications stored as data-3.3.16.xml
file, and build the generator such that it anticipates future
extensions in the specifications. Figure 1 shows a high-level
overview of the generation process, which we explain step-
by-step next.

Parse XML intrinsics specification. The first step in the
generation process extracts the information from the XML
file. As shown in an example (Figure 2), for each intrinsics,
the XML file contains a name that defines the intrinsics

SIMD Intrinsics on Managed Language Runtimes

function, return type, ordered list of each argument of the
function with the corresponding type, CPUID parameter, that
correspond to the ISA set, and a category parameter.

Generate ISA-specific DSL in LMS. For each intrinsic func-
tion we implement four building blocks that define the eDSL.

These are represented in terms of implementation classes

provided by the LMS framework. The classes Def[T] and

Exp[T] together define a computation graph. Subclasses of

Def[T] implement graph nodes that represent individual

computations, e.g., Plus(a,b). Here, a and b are values of

type Exp[T]: either constants Const(.) or symbols Sym(id)

that refer to other graph nodes through a numeric index id.

The four necessary building blocks are as follows:

1. Definition of the intrinsic function represented as a
subclass of Def[T].

2. Implicit conversion from expression Exp[T] to defini-
tion Def[T], looking up a computation node given a
symbolic reference.

3. Mirroring function that converts a Def[T] into expres-
sion Exp[T], potentially applying a transformation.

4. Unparsing routine that converts each Def [T] into C/C++
string.

To complete the first part, we define IntrinsicsDef[T],
an abstract class that each intrinsics definition will inherit:
abstract class IntrinsicsDef[T:Manifest] extends Def[T] {

val category: List[IntrinsicsCategory]

val intrinsicType: List[IntrinsicsTypel]

val performance: Map[MicroArchType, Performance]
val header: String

Then for each intrinsic function, we define a Scala case
class that corresponds to the intrinsics function’s name, its
input arguments and return type. Each case class contains
the category, the type of the intrinsics and performance
informations when available. Additionally, we also include
the header where the C/C++ intrinsics is defined:
case class MM256_ADD_PD (

a: Exp[__m256d], b: Exp[__m256d]

) extends IntrinsicsDef[__m256d] {
val category = List(Arithmetic)
val intrinsicType = List(FloatingPoint)

val performance = Map.empty[MicroArchType, Performance]
val header = "immintrin.h"

With the current definition we allow a particular intrinsics
to pertain to several categories. The header information gives
us the control to include the correct header when unparsing
the code to C/C++ code. Performance information is included
but is not used in the staging process.

Next we generate Scala code for the implicit conversion
from intrinsics expressions to definitions. This routine is
essential in LMS, as it provides automatic conversion of
the staged code into static single assignment (SSA) form. In
most cases it is sufficient to rely on the Scala compiler to
automatically perform the implicit conversion:

CGO’18, February 24-28, 2018, Vienna, Austria

def _mm256_add_pd(a: Exp[__m256d], b:
: Exp[__m256d] = MM256_ADD_PD(a, b)

Exp[__m256d])

The LMS framework supports DSL transformations by
substitution. Once a substitution is defined, LMS creates new
definitions. However, when no substitution is available, a
definition has to be converted to an expression through a
routine of mirroring that converts a Def[T] back to Exp[T],
potentially creating a new definitions for subexpressions as
part of the transformation:
override def mirror[A:Typl(e: Def[A], f: Transformer)

(implicit pos: SourceContext): Exp[A]l = (e match {

case MM256_ADD_PD (a, b) =>

_mm256_add_pd(f(a), f(b))
case MM256_ADD_PS (a, b) =>
_mm256_add_ps(f(a), f(b))

// ... a lot more patterns to match
case _ => super.mirror(e, f)

Once code is generated for all these routines and for each
intrinsic, the final step is to generate code to perform the un-
parsing of the DSL into C code. The unparsing routine is done
similarly to the mirroring routine, by pattern matching each
DSL definition to produce the corresponding C expression:
override def emitNode(s:Sym[Anyl, r:Def[Anyl) = r match {

case iDef@MM256_ADD_PD(a, b) =>

headers += iDef.header
emitValDef (sym, s"_mm256_add_pd(${a}, ${b})")
// ... a lot more patterns to match

case _ => super.emitNode(sym, rhs)

}

Infer intrinsic mutability As mentioned before, when
code is generated for the implicit conversion of an intrinsics
expression to the intrinsics definition, we can rely on the
Scala compiler to match the correct implicit method. This
works correctly for immutable expressions, but not all intrin-
sics are immutable. For example, each intrinsics that loads
and stores from/to memory creates effects that have to be
handled by LMS. The semantic of these effects is essential in
scheduling the DSL.

To resolve this problem, we use the category information
of each intrinsics (see Figure 2), and implement a conserva-
tive heuristic to generate the effects:

e Each time an intrinsics is discovered with a load cate-
gory, we generate a read effect on each argument that
is a memory location.

e Each time an intrinsics is discovered with a store cat-
egory, we generate a write effect on each argument
that is a memory location.

For example, an AVX load of 4 doubles has the form of:

def _mm256_load_pd[A[_], U:Integrall(
mem_addr: Exp[A[Double]], mem_addrOffset: Exp[U]
)(implicit cont: Container[A]): Exp[__m256d] = {
cont.read(mem_addr)
(MM256 _LOAD_PD (mem_addr , mem_addrOffset)
(implicitly[Integral[U]], cont))

CGO’18, February 24-28, 2018, Vienna, Austria

Start developing SIMD code

l

Implement a native function placeholder o
Mixin one or several ISA-specific eDSLs o

Implement the SIMD staged function e

Compile time (developer)

Call compile to generate native code n

Start the Java Virtual Machine (JVM)

l

Detect available C/C++ compilers

|

Inspect the system through CPUID

Infer available ISAs and compiler flags

|

LMS: remove abstraction & generate C code

}

Compile and link the code to the JVM

l

Use high performance SIMD code

Runtime (LMS + compiler pipeline)

Figure 3. Developing explicit vectorized code in the JVM
using SIMD eDSLs.

The heuristics is invoked on each intrinsics that performs
loads, stores, maskstores, maskloads, gather, scatters and
other intrinsics that perform memory-related operations.

Split each ISA specific DSL into subclasses The JVM has
a hard limit of 64KB on the size of each method, which is an
obstacle in generating the unparsing and mirroring routines
for large ISA, such as AVX-512 or KNC. To avoid this obstacle,
and still keep the LMS design pattern, we decided to split
the ISA specific DSLs into subclasses that inherit each other.

3.3 Developing Explicitly Vectorized Code in the
JVM Using SIMD eDSLs

Figure 3 gives a high-level overview of how to use explicit
vectorization in the JVM. The process consists of two parts:
compile-time tasks, done by the high-performance code de-
veloper, and runtime tasks that are done automatically by
LMS and our compiler pipeline. Specifically, the compile-time
tasks of the developer comprise four steps:

1. Implement a native function placeholder that will rep-
resent the vectorized code.

2. Create a DSL instance by instantiating one or mixing
several ISA-specific eDSLs.

3. Implement the SIMD logic as a staged function.

4. Call the provided compile routine to generate, compile
and link the code in the JVM.

Alen Stojanov, lvaylo Toskov, Tiark Rompf, and Markus Piischel

import ch.ethz.acl.commons.cir.IntrinsicsIR
import com.github.dwickern.macros.NameOf._

class NSaxpy {

// Step 1: Placeholder for the SAXPY native function
@native def apply (

a : Array[Float],
b : Array[Floatl],
scalar : Float,
n : Int

): Unit

// Step 2: DSL instance of the intrinsics
val cIR = new IntrinsicsIR
import cIR._

// Step 3: Staged SAXPY function using AVX + FMA
def saxpy_staged(

a_imm : Rep[Array[Floatl],
b : Rep[Array[Float]],
scalar : Rep[Float],

n : Rep[Int]

): Rep[Unit] = { import ImplicitLift._
// make array ‘a‘ mutable
val a_sym = a_imm.asInstanceOf[Sym[Array[Float]]]
val a = reflectMutableSym(a_sym)
// start with the computation
val n@ = (n >> 3) << 3
val vec_s = _mm256_setl_ps(scalar)
forloop(@, n@, fresh[Intl, 8, (i : Rep[Int]) => {
val vec_a = _mm256_loadu_ps(a, i)
val vec_b = _mm256_loadu_ps(b, i)
val res = _mm256_fmadd_ps(vec_b, vec_s, vec_a)
_mm256_storeu_ps(a, res, i)
H
forloop(n@, n, fresh[Intl, 1, (i
a(i) = a(i) + b(i) * scalar
H
}

: Rep[Int]) => {

// Step 4: generate the saxpy function,
// compile it and link it to the JVM
compile(saxpy_staged _, this, nameOf (apply _))

Figure 4. A complete implementation of the BLAS 1 routine
SAXPY in the JVM using AVX and FMA SIMD intrinsics.

After the four steps are completed, and the JVM program
is started, the compiler pipeline is invoked with the compile
routine. This will perform system inspection, search for avail-
able compilers and opportunistically pick the optimal com-
piler available on the system. In particular, it will attempt
to find icc, gcc or 11vm/clang. After a compiler is found,
the runtime will determine the target CPU, as well as the
underlying micro-architecture to derive available ISAs. This
allows us to have full control over the system, as well as to be
able to pick the best mix of compiler flags for each compiler.

Once this process is completed, the user-defined staged
function is executed, which assembles a computation graph
of SIMD instructions. From this computation graph, LMS
generates vectorized C code. This code is then automatically
compiled as a dynamic library with the set of derived com-
piler flags, and linked back into the JVM. To link the native
code into the JVM, JNI requires the C functions header to
contain the Java_ prefix, followed by package name, class

SIMD Intrinsics on Managed Language Runtimes

1 // take 8 __m256 vector types, transpose their
2 // values, returning 8 __m256 vectors.

3 def transpose(row: Seq[Exp[__m256]]1) = {

4 val __tt = row.grouped(2).toSeq.flatMap ({

5 case Seq(a, b) => Seq (

[3 _mm256_unpacklo_ps(a, b),

7 _mm256_unpackhi_ps(a, b)

8)

9 }).grouped (4).toSeq.flatMap ({

10 case Seq(a, b, c, d) => Seq(

11 _mm256_shuffle_ps(a, c, 68),

12 _mm256_shuffle_ps(a, c, 238),

13 _mm256_shuffle_ps(b, d, 68),

14 _mm256_shuffle_ps(b, d, 238)

15)

16 H

17 val zip = __tt.take(4) zip __tt.drop(4)
18 val f = _mm256_permute2f128_ps _

19 zip.map({ case (a, b) => f(a, b, 0x20) }) ++
20 zip.map({ case (a, b) => f(a, b, 0x31) })
21}

22 // Perform Matrix-Matrix-Multiplication

23 def staged_mmm_blocked (

24 a : Rep[Array[Float]],
25 b : Rep[Array[Floatl],
26 c_imm : Rep[Array[Floatl],
27 n : Rep[Int] // assume n == 8k

28): Rep[Unit] = {

29 val c_sym = c_imm.asInstanceOf[Sym[Array[Float]]]
30 val ¢ = reflectMutableSym(c_sym)

31 forloop(@, n, fresh[Int], 8, (kk: Exp[Int]) => {

32 forloop(@, n, fresh[Int], 8, (jj: Exp[Int]) => {
33 // Load the block of matrix B and transpose it
34 val blockB = transpose((@ to 7).map { i =>

35 _mm256_loadu_ps(b, (kk + i) * n + jj)

36 »

37 // Multiply all the vectors of a of the

38 // corresponding block column with the running
39 // block and store the result in matrix C

40 forloop(@, n, fresh[Int], 1, (i: Exp[Int]) => {
41 val rowA = _mm256_loadu_ps(a, i * n + kk)
42 val mulAB = transpose(

43 blockB.map(_mm256_mul_ps(rowA, _))

44)

45 def f(1l: Seq[Exp[__m25611): Exp[__m256] =
46 l.size match {

47 case 1 => 1.head

48 case s =>

49 val lhs = f(l.take(s/2))

50 val rhs = f(l.drop(s/2))

51 _mm256_add_ps(lhs, rhs)

52 }

53 val rowC = _mm256_loadu_ps(c, i * n + jj)

54 val accC = _mm256_add_ps(f(mulAB), rowC)

55 _mm256_storeu_ps(c, accC, i * n + jj)

56 »

57 »

58 H

59 3}

Figure 5. Implementation of MMM in the JVM using AVX
intrinsics

name and name of the native function. The compile rou-
tine automates this process using JVM reflection and some
lightweight use of Scala macros. By this automation, we en-
sure the interoperability between the native function and
the staged function, creating code robust to modifications
and refactoring and eliminate the need for the developer to
recompile the native code each time major code revision are
performed on the low-level code or the class container.
Figure 4 illustrates a complete and self-contained imple-
mentation of a BLAS 1 routine called SAXPY [12], which

CGO’18, February 24-28, 2018, Vienna, Austria

computes y = y + ax for given vectors x, y and scalar a. The
expression forloop(...) creates a staged loop in the LMS
computation graph.

3.4 Evaluation

To assess the viability of our approach we consider two
ubiquitous kernel functions: the aforementioned SAXPY and
matrix multiplication.

Experimental setup. We perform the tests on a Haswell
enabled processor Intel Xeon CPU E3-1285L v3 3.10GHz with
32GB of RAM, running Debian GNU/Linux 8 (jessie), kernel
3.16.43-2+deb8u3. The available compilers are gcc 4.9.2-10
and Intel icc 17.0.0. The installed JVM is HotSpot 64-Bit
Server 25.144-b01, supporting Java 1.8. To avoid the effects of
frequency scaling and resource sharing on the measurements,
Turbo Boost and Hyper-Threading are disabled.

We use ScalaMeter [17] to perform the benchmarks. To
obtain precise results, we select a pre-configured benchmark
that forks a new JVM virtual machine and performs mea-
surements inside the clean instance. The new instance has a
compilation threshold of 100 (-XX: CompileThreshold=100)
and we perform at least 100 warm-up runs on all test cases
to trigger the JIT compiler. Each test case is performed on a
warm cache. Tests are repeated 30 times, and the median of
the runtime is taken. We show the results as performance,
measured in flops per cycle.

To inspect the JIT compilation of the HotSpot JVM, we
use -XX:UnlockDiagnosticVMOptions that unlocks the di-
agnostic JVM options and -XX: CompileCommand=print to
output the generated assembly. In all test cases we observe
the full-tiered compilation starting from the C1 compiler
to the last phase of the C2 compiler. For a fair comparison
between the JVM and our generated intrinsics code, we con-
sider the C2 compiled version of the bytecode only, excluding
the JIT warm-up time and the LMS generation overhead.

SAXPY We compare the generated SAXPY vector code, shown
in Figure 4, against an equivalent Java implementation:

public class JSaxpy {
public void apply(float[] a, float[] b, float s, int n){
for (int i = 0; i < n; 1 += 1)
afi] += b[i] * s;

Figure 6a shows the performance comparison. First we
note the similarity in performance, which is not surprising
since SAXPY has low operational intensity and the simplicity
of the code enables efficient autovectorization. Indeed, the
assembly diagnostics confirms this but reveals that the JVM
only uses SSE whereas our staged version uses AVX and FMA,
which explains the better performance for larger sizes.

For small sizes that are L1 cache resident the Java imple-
mentation does better. This is because JNI methods are not
inlined and incur additional cost to be invoked.

CGO’18, February 24-28, 2018, Vienna, Austria

Flops / Cycle [f/c]

L1 L2 L3

26 97 98 99 910 Il 912 5I3 9l4 9IS 516 I7 I8 519 20 2l 22
Size

-O- Java SAXPY =e= LMS generated SAXPY

(a) SAXPY

Alen Stojanov, lvaylo Toskov, Tiark Rompf, and Markus Piischel

Flops / Cycle [fl/c]

8 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Size

-2~ Java MMM (triple loop) -O- Java MMM =e= LMS generated MMM

(b) Matrix-Matrix-Multiplication

Figure 6. Performance analysis: Java implementation vs LMS intrinsics generated code.

Matrix-matrix multiplication (MMM). For the second
benchmark we chose MMM, which has a high operational
intensity and is known to benefit from various optimizations
such as blocking and vectorization [32]. We consider three
versions. The first is a standard Java implementation of a
triple MMM loop. The two other versions are a blocked
version of MMM, with block size of 8, the first implemented
in Java, and the second implemented using AVX intrinsics
in Scala. For simplicity, we assume that the matrix has size
n = 8k, and provide the implementation in Figure 5.

Our Scala implementation uses the SIMD intrinsics with
high level constructs of the Scala language, including pat-
tern matching (lines 5, 10, 19, 20, etc), lambdas (lines 4, 10,
34), Scala collections (lines 4, 34, etc), closures (line 45) and
others that are not available in low-level C code. Once LMS
removes the abstraction overhead, the MMM function results
in a high-performance implementation. The performance
comparison in Figure 6b shows that the use of explicit vec-
torization through SIMD intrinsics can offer improvements
up to 5x over the blocked Java implementation, and over 7.8x
over the baseline triple loop implementation.

The assembly analysis shows that the C2 compiler will
unroll the hot loops in both Java versions, but does generate
SIMD instructions, which explains the low performance.

Automatic SIMD eDSL generator. The predecessor of the
Intel Intrinsics Guide web application was a Java application
sharing the same name. The older versions of both Java and
the web application contained older version of the intrinsics
specifications, e.g., without AVX-512. However, Intel does
not offer these versions, and continuously updates the XML
specifications, improving the description / performance of
each intrinsic function.

Using tools such as the Wayback Machine, a digital archive
that mirrors web-site states at a given date, we were able
to salvage older, pre-captured iterations of the intrinsics

Table 3. Intel Intrinsics Guide XML specifications.

Specification Date ‘ Specification Date

data-3.2.2.xml 03.09.2014 | data-3.3.14.xml 12.01.2016
data-3.3.1.xml 17.10.2014 | data-3.3.16.xml 26.01.2016
data-3.3.11.xml 27.07.2015 | data-3.4.xml 07.09.2017

specifications, shown in Table 3. Then we instructed our
eDSL generator to re-generate each ISA-specific eDSL.

Our results show that our eDSL generator is robust to-
wards minor changes on the XML specifications, being able
to retrospectively generate eDSLs for recent years. We be-
lieve that if Intel uses the same XML schema for new releases,
our generator should be robust to new ISA updates, as long
as the new ISA has similar properties than its predecessor.

3.5 Limitations

Our approach provides low-level control for performance
optimizations to the Java developer but comes at a price. We
discuss a number of technical issues that would be good to
resolve to further improve ease-of-use and maintainability.
Currently, there is no mechanism to ensure the isomor-
phism between the native function placeholder and the staged
function. As a result, it is the responsibility of the developer
to define this isomorphic relation upon compile time. The
current use of Scala macros makes the code robust in terms
of refactoring and modifications, which is quite convenient
compared to manually maintaining isomorphism between
native C/C++ and JVM code. A more diligent use of Scala
macros could potentially resolve this problem and ensure
complete isomorphic binding of JNI and staged functions.
LMS does not provide any mechanism to deal with ex-
ceptions such as segfaults from generated code. Therefore
it is the responsibility of the developer to write valid SIMD
code. LMS is also not optimized for fast code generation,

SIMD Intrinsics on Managed Language Runtimes

which might result in an overhead surpassing the HotSpot
interpretation speed when used to generate functions that
are computationally light.

Another limitation is a consequence of the complex mem-
ory model in the HotSpot JVM. Once arrays are used in the
native code, GetPrimitiveArrayCritical must be invoked
to obtain the memory space of the array. Depending on the
state of the garbage collector (GC), the array might end up on
different segments on the heap, which could result in a copy
once the native code tries to access the memory space, or the
JVM could decide to temporary disable the GC. Although we
did not experience an array copy in any test case performed,
we believe that the use of LMS intrinsics is best suited for
compute-bound problems, where the copy overhead can be
leveraged by the fast runtime of SIMD instructions upon
each JNI invocation. Some of the issues with JVM arrays can
be avoided by using Java NIO buffers or off-heap memory
allocated with the sun.misc.Unsafe package.

4 Build Your Own Virtual ISA

In the previous section, we demonstrated the use of SIMD
intrinsics in developing high performance code, based on
high-level constructs of the Scala language. However, with
the use of metaprogramming and staging provided by LMS,
we can also use the SIMD intrinsics to build new low-level
abstractions and provide a functionality similar to the SVML
short vector math library that is typically implemented by
low-level C/C++ compilers. As an example, we build abstrac-
tions for low-precision arithmetic and, in particular, building
blocks for the stochastic gradient descent (SGD) algorithm.

SGD is currently among the most popular algorithms in
machine learning, used for training neural networks [1, 22]. It
consists of two main building blocks: a dot-product operator
and a scale-and-add operator. The use of low precision is an
important optimization in SGD for deep learning as it reduces
both computation time and data movement for increased
performance and efficiency [30].

In this section we build a virtual variable-precision ISA
that implements the dot product operator, operating on ar-
rays of 32, 16, 8 and 4-bit precision. For 32 and 16-bit we use
floating point, which is natively supported by the hardware;
for the lower precision formats, we use quantized arrays [30].
Quantization is a lossy compression technique that maps con-
tinuous values to a finite set of fixed bit-width numbers. For
a given vector v of size n and precision of b bits, we first
derive a factor s,, that scales the vector elements v; into the
representable range:

B 2b—1 -1

maXie[1,n] |’Ui|'
The scaled v; are then quantized stochastically:

v = v+ sy +p

10

CGO’18, February 24-28, 2018, Vienna, Austria

where 1 is drawn uniformly from the interval (0, 1). With
this, a quantized array consists of one scaling factor and an
array of quantized b-bit values.

4.1 Implementation

32-bit. For the 32-bit version, we use the built-in hardware
support for floating point. In Java, we can only express scalar
(non-vectorized) code to multiply / add values; using our LMS
intrinsics we have access to AVX2 and FMA.

16-bit. For the 16-bit version we use a half-precision floating
point format, available as a separate ISA extension called
FP16C that provides instructions to convert a 32-bit float
into 16-bit float, and vice-versa. We use these instructions
to load and store the data in 16-bit format, and perform
computations on the 32-bit format. In Java, there is no access
to half-precision floating point; thus, instead, we quantize
the values as shown before to type short.

8-bit. We base our 8-bit version on Buckwild! [23]. Both LMS
intrinsics and the Java implementation operate on quantized
values, using a scaling factor and an array of type byte to
hold the 8-bit two’s complements values.

4-bit. We base this version on the analysis in the ZipML
framework [33]. The values are not two’s complement, but
sign-bit followed by the base in binary format, and stored as
pairs inside the 8-bit values of a byte array.

Scala implementation. In Scala, we can abstract the preci-
sion as a number that reflects the bit length of the format,
and provide two virtual intrinsics functions:

int dot_ps_step (int bits);

__m256 dot_ps (int bits, voidx x, voidx y);

dot_ps_step returns the number of elements processed
by dot_ps for a given bit length. For example, in the case
of 32, 16 and 8-bit versions, 32 elements are processed at
a time and in the case of the 4-bit, 128 elements at a time.
dot_ps takes the bit length and two memory addresses. Ac-
cording to the bit length, it will select the corresponding bit
format, load from the array, compute the dot product and
return the result. Assuming the arrays are padded with their
corresponding dot_ps_step value, the two intrinsics allows
us to easily build for loops with increment defined by the
dot_ps_step, such that dot_ps is invoked at each iteration.
Finally, the resulting dot product with variable precision is a
sum reduction of 8 floats stored in the acc variable:

def dot_AVX2[T] (bits: Rep[Int],

a: Rep[Array[T]]l, b: Rep[Array[T]], len: Rep[Int]
): Rep[Float] = {

var acc = _mm256_setzero_ps();

val increment = dot_ps_step(bits);

forloop(@, len, fresh[Int], increment, i => {

acc += dot_ps(bits, a + i, b + i)
»

reduce_sum(acc)

CGO’18, February 24-28, 2018, Vienna, Austria

Flops / Cycle [f/c]

15-

Alen Stojanov, lvaylo Toskov, Tiark Rompf, and Markus Piischel

-O- Java 32-bit

-4 Java 16-bit

-0~ Java 8-bit

= Java 4-bit

—o- LMS generated 32-bit
—4- LMS generated |6-bit
-&- | MS generated 8-bit
-¥ LMS generated 4-bit

Figure 7. Performance analysis: Variable Precision.

In the 16-bit version, we use the _mm256_cvtph_ps intrin-
sics to convert the half-precision format into 32-bit float-
ing point number. In the 8-bit and 4-bit version we benefit
from _mm256_sign_epi8 and _mm256_abs_epi8 combined
with _mm256_maddubs_epi16 and _mm256_madd_epil16 to
perform fast additions and multiplications, that result in a
32-bit values, without spending a single instruction to per-
form casts. Additionally, in the 4-bit version, we benefit from
intrinsics to perform wide range of bit-wise manipulations to
extract the base and the sign of the 4-bit values. Note that this
version of dot product is implemented such that existence
of AVX2 and FP16C is assumed. It is possible to abstract the
use of the dot operator to an ISA-agnostic implementation
as shown in [27], and performance could be improved using
methods as prefetching, particularly in the 8-bit [23] and
4-bit version, however we did not apply these techniques.

Java implementation. We implement each case as a sepa-
rate class corresponding to the 32, 16, 8 and 4 bit versions.
The simplest dot product is the 32-bit version. Java does not
support bit manipulation or numerical expression on types
lower than 32-bits. Instead, 16-bit and 8-bit types are pro-
moted to 32-bit integers before operations are performed.
To provide a fair comparison, we write the 16, 8 and 4-bit
versions of the dot product such that we block the loop, and
accumulate into integer values, avoiding unnecessary type
promotion as much as possible.

4.2 Evaluation

We use the same experimental setup as in section 3.4. For
each benchmark, we use the identical flop (or op for 8 and
4 bit) count of 2n for the dot-product, where n is the size of
the quantized array.

Figure 7 shows the obtained results. Our 4-bit implemen-
tation outperforms HotSpot by a factor of up to 40x, the 8-bit
up to 9x, the 16-bit up to 4.8x, and the 32-bit version up to
5.4x. There are several reasons for the speedups obtained
with the use of SIMD intrinsics. In the 32-bit case, we see

11

the limitation of SLP to detect and optimize reductions. In
the 16-bit, there is no way to obtain access in Java to an
ISA such as FP16C. And in the 8-bit and 4-bit case, Java is
severely outperformed since it does type promotion when
dealing with integers. However, the largest speedup of 40x
in the 4-bit case is due to the domain knowledge used for the
implementing the dot product, that the HotSpot compiler
cannot synthesize with a lightweight autovectorization such
as SLP.

5 Related Work

We review different lines of related work.

Explicit vectorization in the JVM. The first approach to
expose data parallelism was the implementation of the Java
Vectorization Interface (JVI) as part of the Jitrino JIT com-
piler [13]. JVI is designed as a an abstract vector interface
that provides set of methods as vector operators. This meth-
ods are later compiled to different vector instructions, such
as SSE and AVX. The approach offers competitive results in
some case, but is limited in the SIMD instructions it supports
and subsequent iterations of post-AVX ISAs. Similarly to JVI,
Oracle has ongoing research developing cross-platform APIs
that can leverage SIMD instructions. Implemented as part of
an experimental JVM called Panama [9], SIMD instructions
are used in immutable vector types, parameterized by ele-
ment type and size. Similarly to JVI, Panama also suffers from
limited support of vector ISAs, and requires a specific JVM.
Both approaches abstract SIMD instructions, which limits
the ability of a developer to tune the code to a particular
microarchitecture.

Autovectorization in the JVM. Initially introduced in the
Jikes RVM [4], the HotSpot JVM uses SLP [11] based au-
tovectorization. SLP is limited and is only able to vectorize
basic blocks consisting of groups of isomorphic instructions,
generating SSE and AVX code. Partial support of FMA and
AVX-512 is only planned for Java 9 [9].

SIMD Intrinsics on Managed Language Runtimes

Support of low-level code in the JVM. Sulong [18]isa sys-
tem to execute low-level languages such as C/C++, Fortran,
Ada, and Haskell in the JVM. Sulong is capable of handling
low-level languages that compile to LLVM, using LLVM IR in-
terpreter built on top of the Truffle framework [31], running
on the Graal VM. While this approach can bring a support of
low-level instructions in the JVM, it does not support SIMD
instructions, as Graal does not provide sufficient analysis for
vectorization. Furthermore, due to interpretation, Sulong is
shown to be outperformed by native compilers such as gcc.

Automatic generation of DSLs in LMS. DSLs have been
generated into LMS before. Yin-Yang [10] automatically gen-
erates deep DSL embeddings from their shallow counterparts
by reusing the core translation. Forge [28] generates DSLs
from a declarative specification. None of the approaches have
been challenged to generate DSLs of the scale imposed by
the large amount of SIMD intrinsics, nor were they designed
to automatically infer effects of mutability.

SIMD intrinsics in LMS. A limited support of SIMD in-
structions has been introduced while abstracting vectors
architectures [27]. This approach has been used in gener-
ating libraries for high-performance code, and integration
with the JVM has not been demonstrated. On an even lower
level, LMS has been used to define domain-specific ISAs by
generate specialized hardware [6, 7].

6 Conclusion

Our work shows how metaprogramming techniques can
be used to bridge the gap between high-level managed lan-
guages and the need to access low-level instructions in high
performance code development. Specifically, we showed how
to provide access to SIMD intrinsics in the HotSpot JVM,
thus eliminating the need to write C/C++ code. Two key
techniques underlie our approach. First is the use of embed-
ded DSLs to express intrinsics inside JVM languages such
as Scala. These are generated directly from the vendor XML
specification, which enables complete intrinsics support and
fast updates in the future. Second is the use of staging to
convert SIMD intrinsics interspersed with Scala code into
high-performant C kernels, which are then compiled and
linked via JNI. The challenge in our work is in the system-
atic handling of large sets of functions, converting them
into sets of DSLs, automatically inferring their side effects,
and creating a compiler and code generation pipeline for
convenient and productive development. We show how the
SIMD support in JVM can be used to build powerful high-
level and low-level abstractions while offering significant,
often manifold speedup over the autovectorizing HotSpot
JIT compiler.

12

CGO’18, February 24-28, 2018, Vienna, Austria

A Artifact Description

Submission and reviewing guidelines and methodology:
http://cTuning.org/ae/submission-20160509.html

A.1 Abstract

To reproduce the results presented in our work, we provide
an artifact that consist of two parts:

e Ims-intrinsics, a precompiled jar library that in-
cludes all Intel-based SIMD intrinsics functions, imple-
mented as Scala eDSLs in LMS.

e NGen, a runtime implemented in Scala and Java, that
enables the use of 1lms-intrinsics in the JVM and
includes the experiments discussed in our work.

The SIMD based eDSLs follow the modular design of the
LMS framework and are implemented as an external LMS li-
brary, separated from the JVM runtime. This allows the stand-
alone use of Ims-intrinsics, enabling LMS to generate
x86-vectorized code outside the context of the JVM. The JVM
runtime (NGen) demonstrates the use of the Ims-intrinsics
by providing the compiler pipeline to generate, compile, link,
and execute the LMS-generated SIMD code and has a strong
dependency on this library.

The experiments included in the artifact come in the form
of microbenchmarks. While the most convenient deployment
for this artifact would have been a Docker image through
Collective Knowledge, we decided to eliminate the overhead
imposed by the containers and provided a bare metal deploy-
ment that aims at providing as precise results as possible
for our tests. To achieve that, we use the SBT (Simple Build
Tool) to build and execute our experiments.

A.2 Description
A.2.1 Check-List (Artifact Meta Information)

o Algorithm: Using SIMD intrinsics in the JVM. Experiments
include dot-product on quantized arrays, BLAS routines:
SAXPY and Matrix-Matrix-Multiplication.

e Compilation: Ims-intrinsics is a precompiled library,
compiled with Scala 2.11 and is available as a jar bundle, ac-
cessible through Maven. NGen requires Scala 2.11 and Java 1.8
for compilation. Both NGen and 1ms-intrinsics generate
C code that is compiled with GCC, ICC, or LLVM.

o Transformations: To make SIMD instructions available in
the JVM, NGen uses LMS as a staging framework. The user
writes vectorized code in the eDSL in Scala, and NGen stages
the code through multiple compile phases before execution.

e Binary: Ims-intrinsics is a jar bundle. NGen includes bi-
naries for SBT v0.13.6, as well as a small library for CPUID
inspection and Sigar v1.6.5_01 (System Information Gath-
erer And Reporter https://github.com/hyperic/sigar) binaries.
NGen has various dependencies on precompiled libraries that
include BridJ, Apache Commons, ScalaMeter, Scala Virtu-
alized, LMS, and 1ms-intrinsics. SBT automatically pulls
all dependencies and their corresponding versions.

e Data set: Our experiments operate with random data, re-
quiring no data set.

https://github.com/hyperic/sigar

CGO’18, February 24-28, 2018, Vienna, Austria

Run-time environment: Ims-intrinsics canrun on any
JVM that supports LMS and any operating system supported
by the same JVM. Similarly, NGen could work in any JVM
that supports LMS, reflection, and native code invocation,
however our focus has been on the HotSpot JVM only, sup-
porting Windows, Linux, and Mac OS X. Our results are
most conveniently replicated on a Unix environment.

e Hardware: The NGen and 1ms-intrinsics generated code
can run on any x86 and x86-64 architecture that supports at
least one subset of the Intel intrinsics functions. We recom-
mend a Haswell machine for verifying the results presented
in the paper to obtain comparable results.

e Run-time state: We perform our tests using a warm cache
scenario, warming the code and data cache many times be-
fore measurements begin. We advise that the replication of
our experiments is done with minimal interference of other
applications running on the system, and with technologies
for frequency scaling and resource sharing disabled.

Output: NGen generates the performance profile of each

algorithm presented in this paper.

Experiment workflow: We use SBT not only to compile

the code, but also to run the experiments.

¢ Experiment customization: Customization is certainly

possible and can be easily achieved by implementing any

desired vectorized code in the Scala eDSL.

Publicly available: Yes.

A.2.2 How Delivered

The precompiled SIMD eDSLs library, as well as our JVM
runtime, including the supporting experiments are publicly
available through GitHub with the following links:

e https://github.com/ivtoskov/Ims-intrinsics
o https://github.com/astojanov/NGen

Note that Ims-intrinsicsisalso available through Maven,
and can be used through SBT directly:

"ch.ethz.acl" %% "lms-intrinsics" % "@.0.5-SNAPSHOT"

A.2.3 Hardware Dependencies

Ims-intrinsics as well as NGen are able to generate C code
that can run on any x86 and x86-64 architecture supporting
Intel ISAs. However, the full set of our experiments requires
at least a Haswell machine. Namely:

e SAXPY and MMM algorithms are implemented us-
ing AVX and FMA ISAs, and therefore require at least
a Haswell enabled process. Broadwell, Skylake, Kaby
Lake or later would also work.

e The dot product of the quantized arrays relies on AVX2,
and FMA flags, but also uses the hardware random num-
ber generator, requiring the RDRAND ISA, as well FP16C
to deal with half-precision floats.

We recommend disabling Intel Turbo Boost and Hyper-
Threading technologies to avoid the effects of frequency
scaling and resource sharing on the measurements. Note that
these technologies can be easily disabled in the BIOS settings

13

Alen Stojanov, lvaylo Toskov, Tiark Rompf, and Markus Piischel

of the machines that have BIOS firmware. Many Apple-based
machines, such as the MacBook or others, do not have a user
accessible BIOS firmware, and could only disable Turbo Boost
using external kernel modules such as Turbo Boost Switcher
(https://github.com/rugarciap/Turbo-Boost-Switcher).

A.2.4 Software Dependencies

Ims-intrinsics is a self-contained precompiled library and
all of its software dependencies are handled automatically
through Maven tools such as SBT. To build and run NGen,
the following dependencies must be met:

e Git client, used by SBT to resolve dependencies.
e Java Development Kit (JDK) 1.8 or later.
e C compiler such as GCC, ICC or LLVM.

After installing the dependencies, it is quite important to
have the binary executables available in the $PATH. This way
the SBT tool will be able to process all compilation phases
as well as to execute the experiments. Make sure that the
following commands work on your terminal:

--version
gcc —-version

java -version
javac -version

git

It is also important to ensure that the installed JVM has
an architecture that GCC can compile to. This is particularly
important for Windows users: the 32-bit MinGW port of GCC
will fail to compile code for 64-bit JVM.

A.3 Installation
The artifact can be cloned from the GitHub repository:
git clone https://github.com/astojanov/NGen
The artifact already includes a precompiled version of SBT.
Therefore, to start the SBT console, we run:
cd NGen

For Unix users:
./bin/sbt/bin/sbt

For Windows users
bin\sbt\bin\sbt.bat

Once started, we can compile the code using:
> compile

Once invoked, SBT will automatically pull Ims-intrinsics
as well as all other dependencies and start the compilation.

A.4 Experiment Workflow

Once SBT compiles the code, we can proceed with evaluating
our experiments. We do this through the SBT console. To
inspect the testing machine through the NGen runtime we
use:

> test-only cgo.TestPlatform

https://github.com/ivtoskov/lms-intrinsics
https://github.com/astojanov/NGen
https://github.com/rugarciap/Turbo-Boost-Switcher

SIMD Intrinsics on Managed Language Runtimes

The runtime will be able to inspect the CPU, identify avail-
able ISAs and compilers and inspect the current JDK. If the
test platform is successfully identified, we can continue with
the experiments.

Generating SIMD eDSLs. The Ims-intrinsics bundle in-
cludes the automatic generator of SIMD eDSLs, invoked by:

> test-only cgo.Generatelntrinsics

The Scala eDSLs (coupled with statistics) will be generated
in the Generated_SIMD_Intrinsics folder.

Explicit vectorization in the JVM. To run the experiments
depicted in our work, we use:
> test-only cgo.TestSaxpy

> test-only cgo.TestMMM
> test-only cgo.TestPrecision

In the case of SAXPY, if the testing machine is not Haswell
based, we provided an architecture-independent implemen-
tation of SAXPY:

> test-only cgo.TestMultiSaxpy

Each result shows the size of our microbenchmarks, and
the obtained performance in flops/cycle.

A.5 Evaluation and Expected Result

In the evaluation of the experiment workflow, we expect LMS
to produce correct vectorized code using Ims-intrinsics.
Furthermore, we expect the performance results to behave
consistent with the results shown in this paper, outperform-
ing the JVM on the microarchitectures that support our ex-
periments. Finally, we expect the automatic generation of
eDSLs to be easily adjustable to subsequent updates on the
Intel Intrinsics specifications.

A.6 Experiment Customization

There are many opportunities for customization. We can
use NGen to easily develop vectorized code, and we can use
ScalaMeter to adjust the current benchmarks.

Developing SIMD code. The NSaxpy . scala class, available
insrc/ch/ethz/acl/ngen/saxpy/, provides detailed guide-
lines for the usage of SIMD in Scala. Following the comments
in the file, as well as the structural flow of the program, one
can easily modify the skeleton to perform other vectorized
computations.

Customizing Benchmarks. Each performance experiment,
uses ScalaMeter and is implemented as a Scala class. The
Matrix-Matrix-Multiplication includes BenchMMM. scala lo-
cated in src/ch/ethz/acl/ngen/mmm/. The implementaton
allows changes to various aspects of the benchmarks, includ-
ing the size and the values of the input data, warm up times,
different JVM invocations, etc.

14

CGO’18, February 24-28, 2018, Vienna, Austria

Acknowledgments

This research was partially supported under NSF awards
1553471 and 1564207, and DOE award DE-SC0018050. The
authors also wish to thank Kevin J. Brown for the inspiring
discussion that lead to the creation of our low precision ISA.

References

[1] Léon Bottou. 1991. Stochastic gradient learning in neural networks.
Proceedings of Neuro-Nimes 91, 8 (1991).

Hassan Chafi, Zach DeVito, Adriaan Moors, Tiark Rompf, Arvind K.
Sujeeth, Pat Hanrahan, Martin Odersky, and Kunle Olukotun. 2010.
Language virtualization for heterogeneous parallel computing. In Proc.
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). 835-847.

Intel Corporation. 2012. Intel Intrinsics Guide. https://software.intel.
com/sites/landingpage/IntrinsicsGuide/. (2012). [Online; accessed
4-August-2017].

Sara Elshobaky, Ahmed El-Mahdy, and Ahmed El-Nahas. 2009. Au-
tomatic vectorization using dynamic compilation and tree pattern
matching technique in Jikes RVM. In Proc. Workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems, (ICOOOLPS). 63-69.

[5] Apache Software Foundation. 2004. The Central Repository. https:
//search.maven.org/. (2004). [Online; accessed 4-August-2017].

[6] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J.
Brown, Arvind K. Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo
Ienne. 2014. Hardware system synthesis from Domain-Specific Lan-
guages. In Proc. Field-Programmable Logic and Applications (FPL). 1-8.

[7] Nithin George, David Novo, Tiark Rompf, Martin Odersky, and Paolo
Ienne. 2013. Making domain-specific hardware synthesis tools cost-
efficient. In Field-Programmable Technology (FPT). 120-127.

[8] IBM. 2005. J9 Virtual Machine (JVM). https://www.ibm.com/support/
knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/java_
jvm.html. (2005). [Online; accessed 4-August-2017].

[9] Vladimir Ivanov. 2017. VectorizaAon in HotSpot JVM. http://cr.openjdk.
java.net/~vlivanov/talks/2017_Vectorization_in_HotSpot_JVM.pdf.
(2017). [Online; accessed 4-August-2017].

[10] Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev,
Christoph Koch, and Martin Odersky. 2014. Yin-Yang: concealing the
deep embedding of DSLs. In Proc. Generative Programming: Concepts
and Experiences (GPCE). 73-82.

Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword

[2

—

E

—

[4

flaav)

[11]
Level Parallelism with Multimedia Instruction Sets. In Proc. Program-
ming Language Design and Implementation (PLDI). 145-156.

C. L. Lawson, Richard J. Hanson, D. R. Kincaid, and Fred T. Krogh. 1979.
Basic Linear Algebra Subprograms for Fortran Usage. Transactions on
Mathematical Software (TOMS) 5, 3 (1979), 308-323.

[13] Jiutao Nie, Bugi Cheng, Shisheng Li, Ligang Wang, and Xiao-Feng Li.
2010. Vectorization for Java. In Proc. Network and Parallel Computing
(NPC). 3-17.

Nate Nystrom. 2013. Scala Unsigned. https://github.com/nystrom/
scala-unsigned. (2013). [Online; accessed 4-August-2017].

Oracle. 2002. Oracle JRockit JVM. http://www.oracle.com/
technetwork/middleware/jrockit/overview/index.html. (2002). [On-
line; accessed 4-August-2017].

Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java
hotspotTM Server Compiler. In Proc. Symposium on JavaTM Virtual
Machine Research and Technology Symposium - Volume 1.

Aleksandar Prokopec. 2012. ScalaMeter. https://scalameter.github.io.
(2012). [Online; accessed 4-August-2017].

Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Wiirthinger, and Hanspeter Méssenbéck. 2016. Bringing low-level

[12]

[14]

[15]

[16]

[17]
[18]

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://search.maven.org/
https://search.maven.org/
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/java_jvm.html
http://cr.openjdk.java.net/~vlivanov/talks/2017_Vectorization_in_HotSpot_JVM.pdf
http://cr.openjdk.java.net/~vlivanov/talks/2017_Vectorization_in_HotSpot_JVM.pdf
https://github.com/nystrom/scala-unsigned
https://github.com/nystrom/scala-unsigned
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
https://scalameter.github.io

-

[t

—

—

CGO’18, February 24-28, 2018, Vienna, Austria

languages to the JVM: efficient execution of LLVM IR on Truffle. In
Proc. Workshop on Virtual Machines and Intermediate Languages (VMIL).
6-15.

Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin
Odersky. 2012. Scala-Virtualized: linguistic reuse for deep embeddings.
Higher-Order and Symbolic Computation 25, 1 (2012), 165-207.

Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled DSLs. In
Proc. Generative Programming And Component Engineering, Proceedings
(GPCE). 127-136.

Tiark Rompf and Martin Odersky. 2012. Lightweight modular staging:
a pragmatic approach to runtime code generation and compiled DSLs.
Commun. ACM 55, 6 (2012), 121-130.

David E Rumelhart, Geoffrey E Hinton, Ronald] Williams, et al. 1988.
Learning representations by back-propagating errors. Cognitive mod-
eling 5,3 (1988), 1.

Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle
Olukotun. 2017. Understanding and Optimizing Asynchronous Low-
Precision Stochastic Gradient Descent. In Proc. International Sympo-
sium on Computer Architecture, (ISCA). 561-574.

SAP. 2011. SAP Java Virtual Machine (JVM). https:
//help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/

en-US/da030d10d97610149defa1084cb0b2f1.html. (2011). [Online;
accessed 4-August-2017].

Fridtjof Siebert. 2007. Realtime garbage collection in the JamaicaVM
3.0. In Proc. Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES). 94-103.

Skelmir. 1998. Embedded Virtual Machines (VM) to host Java applica-
tions. https://www.skelmir.com/products. (1998). [Online; accessed
4-August-2017].

Alen Stojanov, lvaylo Toskov, Tiark Rompf, and Markus Piischel

[27] Alen Stojanov, Georg Ofenbeck, Tiark Rompf, and Markus Piischel.

2014. Abstracting Vector Architectures in Library Generators: Case
Study Convolution Filters. In Proc. Workshop on Libraries, Languages,
and Compilers for Array Programming (ARRAY). 14-19.

Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee,
Tiark Rompf, Martin Odersky, and Kunle Olukotun. 2013. Forge: gen-
erating a high performance DSL implementation from a declarative
specification. In Proc. Generative Programming: Concepts and Experi-
ences (GPCE). 145-154.

Christian Wimmer, Michael Haupt, Michael L. Van de Vanter, Mick J.
Jordan, Laurent Daynés, and Doug Simon. 2013. Maxine: An Ap-
proachable Virtual Machine For, and In, Java. ACM Transactions on
Architecture and Code Optimization (TACO) 9, 4 (2013), 30:1-30:24.
Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
2016. Quantized Convolutional Neural Networks for Mobile Devices.
In Proc. Conference on Computer Vision and Pattern Recognition (CVPR).
4820-4828.

Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to rule them all. In Proc. Symposium
on New Ideas in Programming and Reflections on Software (Onward!).
187-204.

Kamen Yotov, Xiaoming Li, Gang Ren, Maria Jestis Garzaran, David A.
Padua, Keshav Pingali, and Paul Stodghill. 2005. Is Search Really
Necessary to Generate High-Performance BLAS? Proc. IEEE 93, 2
(2005), 358-386.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang.
2017. ZipML: Training Linear Models with End-to-End Low Precision,
and a Little Bit of Deep Learning. In Proc. International Conference on
Machine Learning (ICML). 4035-4043.

https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/da030d10d97610149defa1084cb0b2f1.html
https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/da030d10d97610149defa1084cb0b2f1.html
https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/da030d10d97610149defa1084cb0b2f1.html
https://www.skelmir.com/products

	Abstract
	1 Introduction
	2 Background
	2.1 Intrinsics
	2.2 Java Virtual Machines
	2.3 Lightweight Modular Staging

	3 Intrinsics in the JVM
	3.1 Type System for SIMD Intrinsics in the JVM
	3.2 Automatic Generation of ISA-specific eDSLs
	3.3 Developing Explicitly Vectorized Code in the JVM Using SIMD eDSLs
	3.4 Evaluation
	3.5 Limitations

	4 Build Your Own Virtual ISA
	4.1 Implementation
	4.2 Evaluation

	5 Related Work
	6 Conclusion
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Result
	A.6 Experiment Customization

	Acknowledgments
	References

