
Fast Quantized Arithmetic on x86:
Trading Compute for Data Movement

Alen Stojanov∗, Tyler Michael Smith∗, Dan Alistarh†, and Markus Püschel∗
∗ Department of Computer Science, ETH Zurich, Switzerland

† IST Austria, Vienna, Austria

Abstract—We introduce Clover, a new library for efficient
computation using low-precision data, providing mathematical
routines required by fundamental methods in optimization and
sparse recovery. Our library faithfully implements variants
of stochastic quantization that guarantee convergence at low
precision, and supports data formats from 4-bit quantized to 32-
bit IEEE-754 on current Intel processors. In particular, we show
that 4-bit can be implemented efficiently using Intel AVX despite
the lack of native support for this data format. Experimental
results with dot product, matrix-vector multiplication (MVM),
gradient descent (GD), and iterative hard thresholding (IHT)
demonstrate that the attainable speedups are in many cases close
to linear with respect to the reduction of precision due to reduced
data movement. Finally, for GD and IHT, we show examples of
absolute speedup achieved by 4-bit versus 32-bit, by iterating
until a given target error is achieved.

Index Terms—Stochastic quantization, gradient descent, com-
pressive sensing, iterative hard thresholding, SIMD, AVX

I. INTRODUCTION

Recent progress in data processing and machine learning
is due not only to the availability of large datasets and the
introduction of better algorithms, but also to vastly improved
system support for efficient computation. Software frameworks
such as Google’s TensorFlow [1] leverage multi-core and
multi-node parallelism, as well as single-processor pipelining
techniques.

Low-precision data representation has emerged as an im-
portant design point for speeding up both computation and
communication in machine learning applications. For instance,
NVIDIA’s latest GPU family natively supports computation
at 16-bit and 8-bit precisions, while TensorFlow can perform
inference over models quantized to as little as 4-bit precision
per component [1]. This shift is not entirely surprising: funda-
mental methods in optimization and sparse recovery are well
equipped to dealing with noise in data and measurements; low-
precision provides an additional source of quantization noise,
which such methods may be able to support as well.

Recent theoretical advances [2]–[4] support this intuition:
gradient methods can support low-precision data and com-
putation and still converge [3]; similar results are known for
compressive sensing via specific recovery techniques [4]–[6].
However, these results require stochastic quantization (defined
in detail later), needing more careful implementation than
deterministic quantization (e.g., as used in [1]), which is not
known to provide convergence guarantees.

Contribution. The fundamental question addressed in this
paper is whether applications can take advantage of low

precision stochastic quantization on state-of-the-art CPUs. To
answer it we provide a library, called Clover1, that supports
the basic mathematical routines needed in optimization and
sparse recovery with guaranteed convergence. In particular, we
provide efficient implementations of the dot product, scale and
add, and matrix-vector multiplication in 4-bit quantized, 8-bit
quantized, 16-bit half-precision and 32-bit floating point. We
also provide an efficient mixed 4,8-bit precision MVM, with
the matrix represented in 4-bit quantized and the vectors repre-
sented in 8-bit quantized. Our library faithfully implements the
variants of stochastic quantization defined in e.g. [3], [4], and
therefore enjoys the analytical guarantees provided by these
methods.

The main contribution is the efficient implementation of the
quantized 4-bit computations on Intel AVX since there is no
native support for this data format. (In fact, recent work [7]
posited that 4-bit precision could not be supported efficiently
on x86 in the absence of native support.)

In a first set of benchmarks we show that our library
provides significant speed-ups for the low precision versions in
memory bound situations. In particular for MVM we achieve
a speedup linear in the precision reduction, e.g., 8x for 4-bit
over 32-bit, due to reduced data movement.

In a second set of benchmarks we evaluate our library on
two important applications: convex optimization via gradient
descent (GD), and reconstruction in compressive sensing via
iterated hard thresholding (IHT). First, we show that they
inherit the linear (in the precision reduction) speed-up of
MVM when run with reduced precision. Then, we show
that also an absolute, end-to-end speedup is attainable with
precision reduction, i.e., the 4- and 8-bit versions can converge
faster in terms of wall clock time to a given target error,
since the number of extra iterations needed to convergence is
typically smaller than any slowdown due to lowering precision.

II. BACKGROUND

Quantization. We work with stochastic quantization to gen-
erate a low-precision version of an arbitrary vector v. In brief,
stochastic quantization works as follows. Given the vector v,
let M(v) be a scaling factor such that −1 ≤ v/M(v) ≤ 1.
Without loss of generality, let M(v) = maxi |vi|. We partition
the interval [−1, 1] using s + 1 separators: −1 = l0 ≤

1Clover is an open source library, publicly accessible via GitHub at https:
//github.com/astojanov/Clover. Last commit at the time of writing is given
with SHA: 80d6cb248737ab786300623a4678b4ab91e78fc2

https://github.com/astojanov/Clover
https://github.com/astojanov/Clover

l1... ≤ ls = 1, which will be mapped to integer levels for
efficient coding. Each component z in the normalized vector
v/M(v), is quantized to one of its two nearest separators:
li ≤ z ≤ li+1. More precisely, we map z to li+1 with
probability (z − li)/(li+1 − li), and to li with probability
(li+1 − z)/(li+1 − li).

We denote the stochastic quantization function by Q(v, s)
and choose the probability of quantizing to different sep-
arators such that in expectation values are preserved, i.e.,
E[Q(v, s)] = v. We use Q(v) when s is clear from context.

Compressive sensing (CS) [8]–[10] is a standard technique
in sparse signal recovery. It offers a solid mathematical foun-
dation and a range of efficient algorithms for the problem
of recovering sparse signals from noisy, high-dimensional,
incomplete samples, with a wide range of applications, such
as imaging, spectroscopy, and data analysis.

Mathematically, CS assumes a sparse or sparsely-
approximable signal x ∈ Rn, which is sampled via a linear
operator Φm×n with m < n. That is, we are given a vector
of measurements y ∈ Cm, which can be expressed as

y = Φx + e, (1)

where e is the observation noise. Under certain assumptions
on the matrix Φ, as in [9], the sparsity constraint imposed on x
can overcome this ill-posed problem, and allows approximate
recovery of the original signal.

Iterative hard thresholding. At a high level, recovery
algorithms for CS work by iteratively building up a sparse
estimate x such that Φx approximates y, i.e., ‖y − Φx‖2
becomes small. There has been a tremendous amount of work
on developing efficient recovery algorithms; for a survey,
we refer the reader to [11]. In this paper, we focus on a
popular recovery algorithm called iterative hard thresholding
(IHT) [12], [13].

Given the current iterate xt, where x0 is initialized to 0, the
IHT update rule is

xt+1 = Hs(x
t + µΦ>(y −Φxt)), (2)

where Hs(x) : Cn → Cn is the nonlinear thresholding
operator that preserves the largest s (in magnitude) entries of x
and sets the rest to zero, and µ > 0 is a parameter we will call
the step size. The convergence properties of this method and
its variants are well studied [14], and the method can provide
state-of-the-art recovery in some settings.

Gradient descent (GD) is a fundamental method for convex
optimization problems of the form

minimize
x∈Rn

f(x). (3)

GD solves problems of the form (3) by forming a sequence
of estimators (xk)k∈N such that

xk+1 = xk − µ∇f(xk), (4)

given the initial point x0 and fixed positive step size µ,
where ∇f(xk) is the gradient of the function f at point xk.
Theoretical results [15] guarantee that GD reaches ε accuracy

0

0 4 8 12 16 256252248 260 264 268 272 504 508 512

1 0 3 2 63 62… 65 64 67 66 127 126…

Block 0

1

Block 1

Scale 0 Scale 1
0 32 64

scales values

Memory offset

Fig. 1: Illustration of a CloverVector4 container of 128
4-bit elements.

after at most O(1/ε) iterations if f is convex and differentiable
and has a Lipschitz-continuous gradient.

In this paper, we consider GD for solving least squares
problems of the form (3) with f(x) = 1

2‖Ax − b‖2, where
A ∈ Rm×n and b ∈ Rm.

III. LOW PRECISION ARITHMETIC

In this section we describe the implementation of the low-
precision arithmetic library Clover. Our library implements the
linear algebra operations necessary for GD and IHT in 4-bit
quantized, 8-bit quantized, 16-bit half precision, and 32-bit
floating point arithmetic. Furthermore, it implements MVM
using mixed 4,8-bit quantized arithmetic, where the matrix is
represented in 4-bit quantized and the vectors are implemented
in 8-bit quantized. We describe the implementation of the 4-
bit quantized arithmetic in depth and then briefly describe the
differences for the other datatypes.

A. 4-bit Arithmetic

Functionality for quantized 4-bit linear algebra operations
is provided by the CloverVector4 and CloverMatrix4
containers. CloverVector4 contains a vector represented
in a quantized 4-bit format. The values and the scaling factors
are stored in separate contiguous blocks of memory, such that
sub-vectors of length 64 share the same scale.

An illustration of the memory layout of a
CloverVector4 container is shown in Fig. 1. Each
value in the vector is stored as a two’s complement in a
4-bit nibble. The x86 architecture uses byte addressing,
so addressing the nibbles must be done in software. We
accomplish this explicitly in the application logic, storing
two consecutive nibbles in a byte. As a result, the values in
a CloverVector4 of length n are represented as an array
of n/2 bytes.
CloverMatrix4 contains a matrix represented similarly.

The values and scales are stored as separate contiguous blocks
of memory, both in row-major order. Sub-matrices of size 64×
64 share the same scale.

We now describe the implementation of the operations
on the CloverVector4 and CloverMatrix4 containers,
providing more detail for the dot-product implementation as
it is the most important for our applications.

Packing and unpacking of 4-bit values. The x86 archi-
tecture does not support 4-bit integer arithmetic. Thus if we
have an array of 4-bit values, we must unpack, representing
them as larger (i.e., 8, 16 or 32-bit) integers for computation.

048121620242832

048121620242832

logical left shift 28

logical right shift 24

Packing

048121620242832

048121620242832

logical left shift 24

arithmetic right shift 28

Unpacking

sign bit values zero arbitrary bits

Fig. 2: Illustration of placing a two’s complement nibble in
the low ordered four bits of a 32-bit integer.

Then, for efficient storage and data movement, we pack these
larger integers, representing them as 4-bit values stored within
an array. We now describe how to efficiently pack and unpack
nibbles to and from a 32-bit integer, using the example in
Fig. 2. Nibbles can be packed and unpacked into integers of
other sizes similarly.

The goal of unpacking from a 32-bit integer (right part of
Fig. 2) is as follows: We start with a 32-bit entity that stores
eight nibbles. We wish to extract a single 4-bit nibble and
represent it as a 32-bit integer. This can be done with two bit
shifts: (a) a logical left shift is used to shift the nibble so that
it occupies the highest-order 4-bits of the 32-bit entity. (b) an
arithmetic right shift is used to shift the nibble to the lowest
order 4-bits of the 32-bit entity. The arithmetic right shift has
sign extension, filling the high-order 28 bits with the sign bit
of the nibble. yielding a 32-bit integer with the same value as
the two’s complement 4-bit value.

The goal of packing (left part of Fig. 2) is to revert the
unpacking operation. Two bit shifts are used to place the
lowest order 4 bits of a 32-bit integer anywhere within a 32-
bit entity. (a) a logical left shift is used to shift the nibble so
that it occupies the highest-order 4-bits of the 32-bit entity. (b)
a logical right shift is used to shift the nibble to the desired
location within the 32-bit entity. The first sets the bits lower-
ordered than the nibble to zero, and the second sets the bits
higher-ordered than the nibble to zero. A bitwise OR operation
is then used to store up to eight nibbles in the 32-bit entity.

Quantization. Quantization converts a vector or matrix
of 32-bit floating point values into a CloverVector4 or
CloverMatrix4. To achieve fast conversion and stochastic
rounding we use the AVX2 implementation of the XORShift
[16] pseudo random number generator (PRNG). For space
reasons, we do not describe it in detail here.

Dot product. The dot product performs the operation
γ := aTb, where a and b are column vectors. We implement
this operation by unpacking nibbles into 8-bit integers first.
Then, we use the vpmaddubsw instruction to multiply each
unsigned 8-bit integer from the first operand pairwise with the
corresponding signed 8-bit integer from the second operand,
producing intermediate signed 16-bit integers, and storing the

sum of adjacent intermediate 16-bit integers in the destination.
Finally, we sum the intermediate 16-bit integers, storing the
results as 32-bit integers, eventually resulting in a partial sum
that is represented as a 32-bit integer, which is then converted
to a 32-bit float. The procedure is described as follows:

1) Create a single __m256 of 8 32-bit floats that accu-
mulates the result and initialize it to zero. Then start
traversing the vectors by blocks of 64 elements.

2) For each block, load 64 values of aT into one __m256i
called A and 64 values of b into a __m256i called B.

3) Unpack A into two __m256i variables A1 & A2, and
B into B1 & B2, each storing 32 8-bit integers.

4) Extract the signs from the elements in A1 and A2 and
use vpsignb to transfer them to B1 and B2. Now, A1
and A2 store unsigned 8-bit integers, and B1 and B2
store signed 8-bit integers.

5) Use vpmaddubsw to multiply A1 and B1 and to
multiply A2 and B2, giving us two __m256i variables,
each storing 8 signed 16-bit integers.

6) Over several instructions, successively sum the results
until we have a single __m256i of 32-bit integers.

7) Convert the 32-bit integers into floats and multiply them
with the scales, accumulating it in the result variable.

8) Once done iterating over all blocks, perform horizontal
sum reduction on the result variable and return.

This dot product routine returns a single 32-bit floating point
value, which may be later re-quantized. This re-quantization
has some cost, but it is amortized by the rest of the dot product.

Mixed-precision dot product. In the 4-bit dot product,
the values in each vector are unpacked to 8-bit before they
are used for computation. We use this property to implement
a mixed-precision dot product routine where one operand is
an 8-bit quantized vector and the other is a 4-bit quantized
vector. This is accomplished by unpacking the 4-bit operand
into 8-bit integers and loading the 8-bit operand without
unpacking. As explained next, the mixed-precision routine
offers an advantage in MVM as explained next.

Matrix-vector multiplication (MVM). We implement
MVM by traversing the matrix row by row, computing the
dot product of each row with the corresponding vector. Once
64-rows are completed, we re-quantize the 64 values into a
single 256-bit AVX variable, storing it in the resulting vector.
This avoids the performance penalty from re-quantization
associated with the scale and add routine.

We also implemented a mixed-precision MVM by casting
its computation in terms of the mixed-precision dot product
routine. In this mixed-precision MVM, the rows of the matrix
are kept at 4-bit since they constitute the bulk of data move-
ment. The vector is in 8-bit, since it is only loaded once (and
reused) and thus there is little extra data movement but a gain
in precision. The overall effect is a mixed-precision 4,8-bit
MVM that is nearly as fast as the pure 4-bit MVM.

Scale-and-add. The scale-and-add routine multiplies a
CloverVector4 by a scalar, and adds the result to another
CloverVector4. For space reasons, we do not describe it
in detail. The scale-and-add routine is not as efficient as the

dot product routine. This is because for dot product, there is
only a single value to re-quantize, and for scale and add, the
re-quantization must be performed for every element of the
output array.

Parallelization. We use OpenMP for multithreaded execu-
tion. The scale-and-add routine is embarrassingly parallel: one
loop with independent iterations. For MVM, the outer loop that
defines the blocked traversal along the rows of the matrix is
parallelized; thus we do not need a parallel dot product.

B. Other datatypes

We now discuss our implementation of the other datatypes.
8-bit arithmetic The implementation of the 8-bit version

follows the same design decisions of the 4-bit version, i.e.
blocks of 64 elements with a corresponding scale in the vector
case, and tile of 64×64 elements with a corresponding scale in
the matrix case. While the implementation is almost identical,
one important difference is that the 8-bit dot product does
not use steps 2) and 3), as the quantized values are already
represented as 8-bit integers, and instead loads 64 values into
two __m256i variables, each containing 32 8-bit integers.

16-bit arithmetic The implementation of the 16-bit version
uses the native support for half-precision floats, defined in
IEEE 754-2008 as the 16-bit base-2 format. Both the vector
container and the matrix container have no notion of blocks;
instead they are continuous arrays of type uint16_t (C
intrinsics functions use uint16_t instead of a dedicated half-
precision type). We use the vcvtps2ph instruction to per-
form quantiation. When performing scale and add, dot product,
and MVM, we use vcvtph2ps to convert the packed 16-
bit half precision floats into 32-bit single precision floats and
perform the computation. Depending on the operation, we
usually traverse the arrays in blocks of 16, 32, or 64 elements,
such that we load, convert to 32-bit and compute while keeping
most computation in registers and maintaining spatial and
temporal locality. To benefit from ILP, we unroll the loops and
use several accumulators to maximize performance. Our MVM
implementation is based on our 16-bit dot product routine, and
we use OpenMP to parallelize the outer loops.

32-bit arithmetic The 32-bit version uses single-precision
floating point arrays. We use floating-point for this precision
because computation with 32-bit floats is much faster than with
32-bit integers in AVX.Our implementation of the dot product
as well as the scale and add routine is almost identical with the
16-bit version, except that we do not perform conversions. For
MVM we use the (parallel) Intel Math Kernel Library (MKL)
and use OpenMP to parallelize the other routines.

IV. EVALUATION

We evaluated our implementation on an Intel Xeon CPU
E3-1285L v3 3.10GHz Haswell with 32GB of RAM and 25.6
GB/s bandwidth to main memory, running Debian GNU/Linux
8 (jessie), kernel 3.16.43-2+deb8u3. We use the Intel icc
compiler 17.0.0, Intel IPP 2017.0.0 (r52494), and Intel MKL
2017.0.0 (Build 20160801). We use RDTSC to measure the
cycle count for each test, performing 15 repetitions with warm

L1 L2 L3
0

5

10

15

27 29 211 213 215 217 219 221 223 225 227 229

Size

32-bit

16-bit

 8-bit

 4-bit

Flops / Cycle [f/c]

Fig. 3: Performance of single threaded dot product.

cache, and reporting the median result. To avoid the effects of
frequency scaling and resource sharing on the measurements,
Turbo Boost and Hyper-Threading are disabled.

A. Performance of Individual Routines

First, we evaluate the performance of the individual rou-
tines. For each routine we derive a pseudo flop count, using the
number of additions and multiplications required to perform
the mathematical operations, and report our results in flops per
cycle (f/c). The flop count for dot product and scale-and-add
is 2n and for MVM it is 2n2.

Dot product. Fig. 3 shows the performance profile of the
dot product. When the data fits in the L2 cache the 32-bit ver-
sion is much faster than 4-bit because the entire computation
is done using native instructions without unpacking. Once the
data exceeds the size of the L3 cache, 4-bit is fastest since
the dot product is memory bound: data movement from RAM
becomes the bottleneck. The speed-up is up to 6x over the
32-bit version. Since the dot product is only used within (a
parallel) MVM, we do not need a parallel version.

Scale-and-add. The results in Fig. 4a show that the 32-
bit and 16-bit implementations are faster than 4-bit and 8-bit
within cache for the same reasons. However, even outside L3
cache, 4- and 8-bit are no faster than 32-bit due to the overhead
of re-quantization. This is reflected in the low bandwidth used.
As a result, parallelization yields near-linear speed-up for 4-bit
and near none for 32-bit, so parallel 4-bit is about 3x faster
overall (Fig. 4b).

MVM. In Figs. 4d and 4e, we compare sequential and
parallel implementations of MVM for each datatype, including
the mixed 4,8-bit MVM explained in Section III-A. For the
sequential case, for problems that do not fit in cache, we see
that pure 4-bit is about 4.6x faster than 32-bit but uses only
one third of the available bandwidth, and the mixed 4-bit and
8-bit MVM is noticeable slower. However, once parallelized,
all version exhaust the available bandwidth and thus reach a
speedup linear in the precision reduction. The mixed 4,8-bit
MVM is now as fast as the 4-bit version since the bottleneck
is loading the matrix.

B. Evaluation of Quantized IHT and Quantized GD

We implemented the IHT and GD algorithms with the rou-
tines described in Section III and our basic library functions.

L1 L2 L3

19.69 GB/s

18.86 GB/s

5.00 GB/s2.43 GB/s0

2

4

6

8

27 29 211 213 215 217 219 221 223 225 227 229

Vector size N

Flops / Cycle [f/c]

(a) Scale and add single thread

L1

L2 L3

22.02 GB/s

21.69 GB/s

18.37 GB/s

9.09 GB/s

0

5

10

27 29 211 213 215 217 219 221 223 225 227 229

Vector size N

Flops / Cycle [f/c]

(b) Scale and add 4 threads

0.0

2.5

5.0

7.5

10.0

12.5

0 10000 20000 30000
Matrix 1.5N x N

Relative speed up to 32-bit IEEE-754 GD

(c) Relative speed up of Quantized GD

L3 16.73 GB/s

10.52 GB/s

12.22 GB/s

8.63 GB/s

7.24 GB/s

0

5

10

15

0 10000 20000 30000
Matrix size N x N

 32-bit 16-bit 8-bit 4-bit 4&8-bit

Flops / Cycle [f/c]

L3
16.73 GB/s

10.52 GB/s

12.22 GB/s

8.63 GB/s

7.24 GB/s

0

5

10

15

0 10000 20000 30000
Matrix size N x N

Flops / Cycle [f/c]

(d) MVM using 1 thread

L3 22.36 GB/s

22.90 GB/s

22.85 GB/s

22.50 GB/s

22.22 GB/s

0

20

40

60

0 10000 20000 30000
Matrix size N x N

Flops / Cycle [f/c]

(e) MVM using 4 threads

0.0

2.5

5.0

7.5

10.0

12.5

0 10000 20000 30000
Matrix N x 2N

Relative speed up to 32-bit IEEE-754 IHT

(f) Relative speed up of Quantized IHT

Fig. 4: Performance evaluation of quantized linear algebra routines and their application in IHT and GD algorithms.

We show relative performance, comparing the 8-bit, 16-bit,
and mixed 4,8-bit versions to the 32-bit implementation of
these algorithms. The mixed 4,8-bit version uses 4-bit matrices
and 8-bit vectors, using a mixed 4-bit and 8-bit MVM routine
and pure 8-bit vector-vector routines.

Experimental setup. In the case of IHT, we set up Φ to
have twice as many columns as rows (n = 2m), with a sparsity
of m/4. For GD, we set up A to have 1.5x as many columns
as rows (n = 1.5m). We define the recovery error as the norm
of the difference between the recovered x and the original x,
divided by the norm of the original x. For both algorithms
IHT and GD, we use grid search for the hyperparameter
optimization of the µ parameter to decrease recovery error and
minimize the number of iterations. We compute ΦT needed
in (2) offline and feed it as an argument along with Φ to both
the IHT and GD routines. We use the parallel version of all
operations within the IHT and GD algorithms.

Per-iteration speedup. We observe that the per-iteration
speedup of both IHT and GD scales almost perfectly with the
reduction in precision, e.g., 4x speedup for 8-bit precision.
This speedup is inherited from MVM, which constitutes the
bulk of the computation. The precision of the result obtained
after a given iteration will of course vary between the data
formats. For this reason we investigate absolute speedup next.

Absolute speedup. To compare the end-to-end performance
of the different implementations of IHT and GD, we record
the time it takes each implementation to reach a given tar-
get recovery error. To obtain a target error, we choose for
each problem size the best recovery error achievable by the
mixed 4,8-bit precision implementation. We then determine
the number of iterations that each datatype needs to achieve
the target recovery error and record the time needed for each
implementation to run for that number of iterations. Results
are shown for GD in Fig. 4c and for IHT in Fig. 4f. The first
important observation concerns the absolute gain in runtime
for the selected target error. For GD, 4-bit is about 5x faster
as 32-bit. Since the per-iteration speed-up is about 8x, this
means it needs about 3/5 more iterations, typically around 24
versus 15 for 32-bit. Interestingly, 8-bit can offer more than
4x speedup in some cases, meaning that it actually requires
fewer iterations than 32-bit. This can happen as stochastic
quantization adds noise, which can speed up convergence in
some cases, e.g. [3], [17]. Also, the runtime is very sensitive
to the value of µ.

For IHT, the runtime behaviour is more erratic, likely due
to the dependency on µ and due to the small number of
iterations (typically around 3–5). For 4-bit we also observe
that usually more iterations are needed but also, in rare cases,

fewer, achieving speedups of up to 7.6x. Overall, 4-bit offers
an absolute speedup in many cases. The delicate relationship
between problem specification, data precision, hyperparameter,
and target error invites further investigation.

V. RELATED WORK

There has recently been considerable interest in low-
precision computation and communication in the context of
machine learning, e.g. [17]–[19]. Due to space constraints,
we will focus on work that is immediately related to ours.
One of the first to consider low-precision computation with
convergence guarantees in the context of (stochastic) gradient
descent has been Buckwild! [2]. They provide convergence
analysis for the restricted case where only the gradients
are quantized, and provide CPU implementation results via
intrinsics for four and eight bits in the more general case where
the gradients are quantized. We note that their implementation
departs from the theory, and therefore is not analytically
guaranteed to converge. The ZipML project [3] presents an
algorithmic framework for end-to-end low-precision stochastic
gradient descent (quantized gradients, model, and data), com-
plete with convergence analysis in the convex case including
FPGA implementation results for various precisions [20]. We
implement their algorithmic framework here in the context of
gradient descent. To our knowledge, this is the first efficient
such implementation for CPUs. Our framework removes their
technical requirement that the data has to be quantized before
the execution of the algorithm, as we also implement fast
quantization and dequantization. Recent work [7] performed
an in-depth study of low-precision and asynchronous SGD
computation on CPUs and FPGAs, with an eye towards
architectural implications. Due to the lack of native instruction
support for 4-bit (or lower) operations in, e.g., AVX2, they
focused on 8-bit and higher precisions in their implementation,
and obtained 4-bit results by emulating the existence of native
instructions in a simulator. Here, we overcome this limitation
by replacing native 4-bit instructions through careful use of
existing AVX2 intrinsics. This allows us to obtain results for
4-bit instructions on existing CPUs, while at the same time
preserving computational efficiency.

Low-precision recovery algorithms for compressive sensing,
and their FPGA implementations, have been considered by
several references, e.g. [4]–[6]. Our CPU implementation of
low-precision IHT is adapted from this last reference. To our
knowledge, ours is the first low-precision CPU implementation
of this technique.

VI. CONCLUSION

The main contribution of the paper is to show that reduced
precision stochastic quantized arithmetic can be implemented
efficiently on modern CPUs. In particular, this holds for 4-
bit on Intel AVX even though there is no native support for
operations with this data format. This is possible since the
extra operations needed are overcompensated by the reduced
data movement in the memory-bound situations that are typical
in many applications. In these cases a speed-up linear in the

precision reduction is possible. As examples where this is
the case, we considered gradient descent and iterative hard
thresholding, for which we exhibited absolute speed-ups (time
to target error) with reduced precision.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proc. Symposium on Operating Systems
Design and Implementation (OSDI), vol. 16, 2016, pp. 265–283.

[2] C. D. Sa, C. Zhang, K. Olukotun, and C. Ré, “Taming the wild: A
unified analysis of hogwild-style algorithms,” in Advances in Neural
Information Processing Systems (NIPS), vol. 28, 2015, pp. 2674–2682.

[3] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, “ZipML:
Training linear models with end-to-end low precision, and a little bit of
deep learning,” in Proc. International Conference on Machine Learning
(ICML), 2017, pp. 4035–4043.

[4] N. M. Gürel, K. Kara, A. Stojanov, T. Smith, D. Alistarh,
M. Püschel, and C. Zhang, “Compressive Sensing with Low Preci-
sion Data Representation: Radio Astronomy and Beyond,” CoRR, vol.
abs/1802.04907v2, 2018.

[5] Y. Plan and R. Vershynin, “One-bit compressed sensing by linear
programming,” Comm. on Pure and Applied Mathematics, vol. 66, pp.
1275–1297, 2013.

[6] S. Gopi, P. Netrapalli, P. Jain, and A. Nori, “One-bit compressed sensing:
Provable support and vector recover,” in Proc. International Conference
on Machine Learning (ICML), 2013.

[7] C. D. Sa, M. Feldman, C. Ré, and K. Olukotun, “Understanding and
optimizing asynchronous low-precision stochastic gradient descent,” in
Proc. International Symposium on Computer Architecture (ISCA), 2017,
pp. 561–574.

[8] D. L. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[9] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Information Theory, vol. 52, no. 2, pp. 489–509,
2006.

[10] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on pure and
applied mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[11] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applica-
tions. Cambridge University Press, 2012.

[12] T. Blumensath and M. Davies, “Iterative thresholding for sparse approx-
imations,” The Journal of Fourier Analysis and Applications, vol. 14,
no. 5-6, pp. 629–654, 2008.

[13] T. Blumensath and M. E. Davies, “Iterative thresholding for compressed
sensing,” Applied and Computational Harmonic Analysis, vol. 27, no. 3,
pp. 265–274, 2009.

[14] T. Blumensath, M. Davies, and G. Rilling, “Greedy algorithms for
compressed sensing,” in Compressed Sensing: Theory and Applications.
Cambridge University Press., 2012, pp. 348–393.

[15] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2013, vol. 87.

[16] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software,
Articles, vol. 8, no. 14, pp. 1–6, 2003. [Online]. Available:
https://www.jstatsoft.org/v008/i14

[17] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems (NIPS), vol. 30,
2017, pp. 1707–1718.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proc. European Conference on Computer Vision (ECCV), 2016, pp. 525–
542.

[19] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems, vol. 28, 2015, pp.
3123–3131.

[20] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang, “FPGA-
accelerated dense linear machine learning: A precision-convergence
trade-off,” in Proc. International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2017, pp. 160–167.

https://www.jstatsoft.org/v008/i14

	Introduction
	Background
	Low Precision Arithmetic
	4-bit Arithmetic
	Other datatypes

	Evaluation
	Performance of Individual Routines
	Evaluation of Quantized IHT and Quantized GD

	Related Work
	Conclusion
	References

